چاودُم[۱] یا تریتیکاله غلهای
جدید است که به وسیله انسان و در نتیجه تلاقی ژنومهای گندم جنس
Triticum و چاودار جنس Secale
به وجود آمدهاست. نام تریتیکاله از نام علمی گونههای به وجود آورنده آن گرفته
شدهاست. در این مورد گندم به جای گیاه مادر به کار گرفته شده و دانههای گرده از
چاودار میباشد. اگر در تلاقی بین گندم و چاودار از گندم تتراپلوئید استفاده گردد تریتیکاله
حاصل هگزاپلوئید خواهد بود و اگر گندم
هگزاپلوئید مورد استفاده قرار گیرد تریتیکاله حاصل اکتاپلوئید خواهد بود که از
عملکرد پائین برخوردار بوده که علت آن ناسازگارهای عمومی بین ژنوتیپ گندم که گیاهی
خودبارور و ژنوتیپ چاودار که گیاهی است دگربارور به وجود میآید.
تریتیکاله بر حسب واریتهها (گونه) گندم
و چاودار تلاقی داده شده برای تولید آن ممکن است بهاره یا زمستانه باشد. گیاهی است
یکساله یا کمی بیشتر از یکسال و تیپ عمومی آن شبیه گندم است. در مقایسه با گندم از
قابلیت رشد و مقاومت بیشتری برخوردار بوده و دید توقع نسبت به شرایط آب و هوایی و زمین
برای پهنههای نامناسب توصیه شدهاست.
خصوصیات گیاهی
[ویرایش]
تریتیکاله گیاهی است خودبارور با درصد کمی خاصیت دگرباروری. انواع تجاری آن از نوع هگزاپلوئید و دارای ۴۲ کروموزوم هستند. تریتیکاله بیشتر شبیه گندم است
تا چاودار ولی در عین حال دارای خصوصیات مورفولوژیکی ویژهای نیز میباشد.
ریشه
مورفولوژیکی
ریشه تریتیکاله مشابه والدین خود میباشد. تعداد ریشههای جنینی (اولیه) در ارقام
مختلف از ۱ تا ۷ عدد متغیر است اما معمولاً بین ۳ تا ۵ عدد میباشد. ریشهها
از رطوبت موجود در ۱۵ تا ۴۵ سانتیمتری خاک استفاده میکنند و
نسبت به گندم و چاودار بیشتر در لایههای سطحی خاک متمرکز
شدهاند.
ساقه
ساقه تریتیکاله
ماشورهای است دارای ظرفیت پنجهزنی مابین است. طول مدت پنجهزنی در دماهای کم
طولانی میباشد.
برگ
برگها
همانند سایر غلات از
محل گرههای ساقه خارج شده و بهطور متناوب در طول ساقه قرار گرفتهاند. هر برگ از
دو قسمت پهنک و غلاف تشکیل شدهاست.
گل
گلدهی
در تریتیکاله معمولاً همانند گندم است اما رسیدگی اغلب آهستهتر صورت میگیرد و از
طرفی در تریتیکاله مدت گلدهی نسبت به گندم طولانیتر است. در تریتیکاله پوشهها
غیر متقارن و پوشینهها متقارن میباشد که وجود این خصوصیات باعث تشخیص آن از
سنبله گندم میگردد. ارقام تریتیکاله بهطور معمول ریشکدار هستند اما ارقام بدون
ریشک نیز در بعضی از آنها مشاهده میگردد.
دانه
شکل
خارجی دانه کاملاً شبیه به گندم و چاودار میباشد. دانهها درون گلچهها رشد کرده و معمولاً در هر سنبلچه ۲ تا ۳ عدد هستند. هنگام رسیدن رطوبت بذر در حدود ۱۳
تا ۱۴ درصد بوده و پدیده ریزش دانه هنگام برداشت کمتر مشاهده میگردد دانه
تریتیکاله بلندتر از گندم است ۱۰ تا ۱۲ میلیمتر طول و ۳ میلیمتر عرض دارد.
سازگاری
[ویرایش]
ترتیکاله به دامنه وسیعی از شرایط
اقلیمی متفاوت سازگاری دارد؛ و همین عامل آن را به عنوان یک گیاه شاخصی در میان
غلات معرفی مینماید. تریتیکاله از آنجاییکه ارزش غذایی بالاتری نسبت به چاودار دارد میتواند جایگزین
مناسبی برای چاودار مخصوصاً در نقاطی که کشت گندم امکانپذیر نیست یا عملکرد
مناسبی از آن به دست نمیآید باشد این امر یک امتیاز اقتصادی مهم در نقاط مختلف
دنیا برای این گیاه محسوب میگردد.
نور
تریتیکالههای
اولیه با وجود دوره رشد طولانی احتیاج به طول روز زیاد داشتهاند انتقال صفت و عدم
حساسیت به طول روز از گندمهای مکزیکی به
تریتیکاله باعث بهبود سازگاری آن در نواحی با عرضهای کم گردیدهاست و ارقام تولید
شده به طول روز غالباً بیتفاوت بوده و محدودیتی از نظر تاریخ کاشت ندارند.
حرارت
در
تریتیکاله حداقل دما برای شروع جوانه زنی ۵ درجه سانتیگراد، دمای مطلوب ۲۰ درجه سانتیگراد و حداکثر دما برای
شروع جوانه زنی ۳۰ درجه سانتیگراد گزارش شدهاست و مقاومت به سرما در بعضی از
واریتهها مشابه گندم و چاودار زمستانه است و همچنین مشخص شده تحمل تریتیکاله نسبت
به دماهای کم در اوایل دوره رشد رویشی بیشتر از گندم است.
رطوبت
تحمل
به خشکی در نواحی نیمه خشک از قبیل مناطق جنوبی با بارندگی سالانه حداکثر ۴۰۰ تا ۷۰۰ میلیمتر قابل توجه بوده
و تحت این شرایط عملکرد نسبتاً مطلوبی به دست آمدهاست و بعضی از ارقام آن تحمل به
خشکی آن نسبت به گندم بیشتر میباشد.
خاک
مطابق
گزارشها رسیده از نواحی مختلف دنیا تریتیکاله جایگزین مناسبی برای چاودار در خاکهای
غیر حاصلخیز و شنی میباشد با این تفاوت که عملکرد آن در این نواحی به مراتب بیشتر
است از چاودار. همچنین مشخص شدهاست که تریتیکاله دامنه سازگاری وسیعی به کاشت در
خاکهای اسیدی با اسدیسته (PH) کم
دارد و همچنین تریتیکاله گیاهی است مقاوم به شوری به خصوص مقاومت به شوری در مراحل
اولیه رشد در مقایسه با گندم و جو کاملاً مشهود است. عملکرد تا میزان۳٫۷ دسیزیمنس در متر (واحد شوری و معادل
میلی موس در سانتیمتر) تحت تأثیر شوری خاک قرار میگیرد.
تناوب
زراعی
تریتیکاله
از نظر خصوصیات مورفولوژیکی از جمله شکل و ساختمان ریشه، اندامهای هوایی و دوره
رشد و نمو شبیه گندم میباشد لذا معمولاً در مقایسه میتوان آن را در ردیف گندم
قرار داد؛ بنابراین تحت شرایط متفاوت آب و هوایی، تناوبی که برای گندم توصیه میشود
جهت تریتیکاله نیز صادق است.
آمادهسازی
زمین
کلیه
مراحل آمادهسازی زمین مانند گندم و جو در منطقه میباشد و کشت با بذرکارهای غلات
صورت میپذیرد.
تاریخ
کاشت
با
توجه به این که کمینه دما برای جوانه زدن تریتیکاله مانند چاودار و یولاف ۲ تا ۳درجه
سانتیگراد است ولی زود کاشت آن به مدت ۱۰ روز در قیاس با گندم (مرسوم در منطقه)
باعث پر شدن مناسبتر دانه میگردد.
میزان
بذر و تراکم بوته
تراکم
بوته دارای همبستگی قبلی با شرایط دوره رویش و تأمین رطوبت آن زمان دارد؛ و تراکم
بوته با میزان رطوبت میتواند راندمان استفاده از آب و عملکرد را در حد مطلوب حفظ نماید.
رویهم رفته تعداد ۳۵۰ تا ۴۰۰ بوته در هر متر مربع که مترادف است با ۱۴۰ تا ۱۶۰ کیلوگرم بذر در شرایط
حاصلخیزی متوسط و به قوه نامیه استاندارد مناسب تشخیص داده شدهاست.
عمق
کاشت
عمق
کاشت در زراعت تریتیکاله از گندم کمتر میباشد آزمایشها انجام شده در کمیت نشان
میدهد که عمق کاشت بیشتر از ۶ سانتیمتر میتواند عملکرد را کاهش دهد در صورتی که
عملکرد گندم وقتی عمق بذرکاری ۹ سانتیمتر باشد نیز کاهش پیدا نمیکند اما عمق
بذرکاری تریتیکاله به دلیل پایین بودن قدرت نامیه بذر نباید بیشتر از ۶ سانتیمتر
گردد. عمق مطلوب کاشت ۲ تا ۴ سانتیمتر میباشد و کاشت عمیقتر، تراکم بوته وعملکرد
دانه را کاهش میدهد.
نیازهای غذایی تریتیکاله
[ویرایش]
فاکتورهایی نظیر آب و هوا، حاصلخیزی
خاک، رطوبت و ژنوتیپ و نوع برداشت (علوفه و دانه یا علوفه) باید مد نظر گرفته شود
ولی در شرایط حاصلخیزی متوسط تا نامناسب برای کسب عملکرد مطلوب و در تاریخ کاشت
اپتیمم افزایش ۸۰ کیلوگرم P
و ۸۰ کیلوگرم K
و ۱۲۰ کیلوگرم N
در هکتار تاکنون عملکرد قابل قبول دانه را همراه داشتهاست.
آبیاری
[ویرایش]
در آزمایشهای که در کشور صورت پذیرفته
در شرایط حاصلخیزی محدود و بارندگی طبیعی طی سه سال به ترتیب ۴۴۳، ۳۰۹، ۲۳۹ میلیمتر
طی دوره رویش نشان داده که عملکرد دانه ارقام تریتیکاله حدود۲۱ درصد بر عملکرد
گندم برتری داشته که به نظر در شرایط بسیار مناسب بارندگی تا ۴۰۰ میلیمتر بهترین
راندمان را دارا میباشد. در شرایط آبیاری با توجه به اینکه بین عملکرد دانه و طول
پر شدن آن همبستگی قوی و مثبت وجود دارد و در زمان پر شده دانه نیاز به آب مشاهده
میگردد. همچنین تأمین آب نیاز به بستگی به نوع برداشت نیز دارد (شرایط دومنظوره علوفه
بی دانه). در استان خراسان پس از یک تا دو نوبت سر چر داده در اوایل بهار اقدام
به کود دهی
و آبیاری بعدی مینمایند و کشت آن در اکثر اراضی که از آب برخوردار است توصیه میشود.
در کل اگر مانند گندم و جو آبیاری شود عملکرد بسیار خوبی خواهد داشت.
علفهای هرز
[ویرایش]
وجود علفهای هرز در مزارع از این نظر
که بر روی رشد گیاهان زراعی اثر نامطلوب دارند همواره مشکل ساز بودهاست لذا
مبارزه با علفهای هرز توسط روشهای متفاوت شیمیایی، زراعی و مکانیکی صورت میپذیرد.
علفهای هرز مزارع تریتیکاله مشابه علفهای هرز مزارع گندم میباشد به این جهت
کلیه روشهایی که برای مبارزه با علفهای هرز مزارع گندم استفاده میشود را در
مورد تریتیکاله میتوان اعمال نمود. از آنجاییکه در مراحل اولیه نسبت به علفهای
هرز دارای رشد سریعتر میباشد لذا میتوان با سایه اندازی بر روی علفهای هرز مانع
رشد یا کاهش رشد آنها گردید که این امر خود نوعی کنترل بیولوژیکی است که از طریق
تریتیکاله اعمال میگردد.
بیماریها
[ویرایش]
تریتیکاله دارای خصوصیات مطلوب تحمل به
بیماریهایی مثل کتولگی جو، زنگ قهوه ای، سفیدک و سیاهک بوده و در مقابل آفاتی چون شته روسی زنبور از
تحمل خوبی برخوردار است.
برداشت تریتیکاله
[ویرایش]
اگرچه هدف از به وجود آوردن تریتیکاله
بدواً مصادف تغذیه انسان بوده ولی هماکنون عمدتاً به عنوان یک نبات علوفهای در
جهان کشت میگردد و در قیاس با جو میزان دانه تولیدی دو برابر عملکرد دانه جو و
مجموع ماده خشک (علوفه تولیدی پس از هر چین و
دانه استحصالی) ۱٫۵برابر جو است عملکرد دانه دو رقم تریتیکاله مناسب ایران در
مقایسه با ارقام شاهد گندم اصلاح شده مجموعاً ۲۰ درصد برتری عملکرد داشتهاست که
در تمام مناطق نسبت به گندم باید در نظر گرفته شود. در استان خراسان در صورتیکه
در طول مراحل اولیه رشد سرچر داده شود میزان تولید دانه در هکتار حدود ۳٫۵ تا ۴ تن
بوده و در صورتیکه برداشت علوفه صورت نپذیرد متوسط عملکرد دانه ۶ تا ۷ تن در
هکتار بودهاست. عملکرد آن در کشورهای جهان متفاوت بوده و در بعضی کشورها میانگین
عملکرد ۶٫۸ تا ۷٫۵ ولی طبق گزارشها عملکرد آن بیش از۹ تن در هکتار میباشد.
برداشت آن شبیه به سایر غلات با کمباین صورت میپذیرد. این گیاه مقاومت خوبی نسبت
به ریزش دانه دارد.[۲]
معایب تریتیکاله
[ویرایش]
1. ظاهر چروکیده
2. وجود شکاف طولی عمیق که محل تجمع میکروبها
به خصوص قارچها میباشد.
3. کیفت کم پروتئین تریتیکاله نسبت به گندم. پروتین بیشتری نسبت به
گندم دارد
4. کم بودن هکتولیتر در تریتیکاله[۳]
پینوشت
[ویرایش]
1.
↑ «چاودُم» [کشاورزی، شاخهٔ زراعت و اصلاح نباتات]
همارزِ «تریتیکاله» (به انگلیسی: triticale)؛
منبع: گروه واژهگزینی. (۱۳۷۶-۱۳۸۵).
فرهنگ واژههای مصوب فرهنگستان. تهران: انتشارات فرهنگستان زبان و ادب فارسی. شابک ۹۷۸-۹۶۴-۷۵۳۱-۷۷-۱ (ذیل
سرواژهٔ triticale)
2.
↑ «سایت جهاد
کشاورزی استان گلستان». بایگانیشده از اصلی در ۲ آوریل ۲۰۰۹. دریافتشده
در ۱۷ اوت ۲۰۱۷.
3.
↑ جزوه غلات دکتر کدیور. دانشگاه صنعتی اصفهان
منابع
[ویرایش]
· جزوه غلات دکتر کدیور. دانشگاه صنعتی
اصفهان
· سایت جهاد
کشاورزی استان گلستان
- این صفحه آخرینبار در ۱۸ ژوئن ۲۰۲۳ ساعت ۰۷:۵۳ ویرایش شده است.
Triticale (/trɪtɪˈkeɪliː/;
× Triticosecale) is a hybrid of wheat (Triticum)
and rye (Secale) first bred in laboratories during the late 19th
century in Scotland and Germany.[1] Commercially
available triticale is almost always a second-generation hybrid, i.e., a cross
between two kinds of primary (first-cross) triticales. As a rule, triticale
combines the yield potential and grain quality
of wheat with the disease and environmental tolerance (including soil
conditions) of rye. Only in 1970 did the first commercial variety become
available.[2] Depending
on the cultivar, triticale can more or less resemble
either of its parents. It is grown mostly for forage or fodder, although some triticale-based foods
can be purchased at health food stores and can be found in
some breakfast cereals.
When
crossing wheat and rye, wheat is used as the female parent and rye as the male
parent (pollen donor). The resulting hybrid is sterile and must be treated with colchicine to induce polyploidy and thus the ability to
reproduce itself.
The
primary producers of triticale are Poland, Germany, Belarus, France and Russia. In 2014, according to the Food and
Agriculture Organization (FAO), 17.1 million tons were
harvested in 37 countries across the world.[3]
The
triticale hybrids are all amphidiploid, which means the plant is diploid for two genomes derived from different species. In other words, triticale is an allotetraploid. In earlier years, most work
was done on octoploid triticale.
Different ploidy levels have been created and
evaluated over time. The tetraploids showed little promise, but hexaploid triticale was successful enough
to find commercial application.[4]
The CIMMYT (International Maize and Wheat
Improvement Center) triticale improvement program was intended to improve food
production and nutrition in developing countries.
Triticale was thought to have potential in the production of bread and other
food products, such as cookies, pasta,
pizza dough and breakfast cereals.[4] The protein content is higher than that of
wheat, although the glutenin fraction is
less. The grain has also been stated to have higher levels of lysine than wheat.[5] Acceptance
would require the milling industry to
adapt to triticale, as the milling techniques employed for wheat are unsuited
to triticale.[6] Past
research indicated that triticale could be used as a feed grain and,
particularly, later research found that its starch is readily digested.[7] As a feed
grain, triticale is already well established and of high economic importance.
It has received attention as a potential energy crop, and research is currently being
conducted on the use of the crop's biomass in bioethanol production. Triticale has also
been used to produce vodka.[8][9]
History
[edit]
|
This section needs
additional citations for verification. Please
help improve this
article by adding
citations to reliable sources in this section. Unsourced
material may be challenged and removed. (June 2021) (Learn
how and when to remove this message) |
In
the 19th century, crossing cultivars or species became better understood,
allowing the controlled hybridization of more plants and animals. In 1873,
Alexander Wilson first managed to manually fertilize the female organs of wheat
flowers[10] with rye
pollen (male gametes), but found that the resulting plants were sterile, much
the way the offspring of a horse and donkey is an infertile mule.
Fifteen years later in 1888, a partially-fertile hybrid was produced by Wilhelm
Rimpau [de],
"Tritosecale Rimpaui Wittmack". Such hybrids germinate only when the
chromosomes spontaneously double.
Unfortunately,
"partially fertile" was all that was produced until 1937. In that
year, it was discovered that the chemical colchicine, which is used both for general
plant germination and as a treatment for gout,
would force chromosome doubling by keeping them from pulling apart during cell
division.[11] Triticale
had become viable, though at that point the cost of producing the seeds was
disproportionate to the yield.
By
the 1960s, triticale was being produced that was far more nutritious than
normal wheat. However, it was a poorly-producing crop, sometimes yielding
shriveled kernels, germinating poorly or prematurely, and did not bake well.
Modern
triticale has overcome most of these problems, after decades of additional
breeding and gene transfer with wheat and rye. Millions of acres/hectares of
the crop are grown around the world, slowly increasing toward becoming a
significant source of food-calories.
Species
[edit]
Triticale
hybrids are currently classified by ploidy into three nothospecies:[12]
·
× Triticosecale semisecale (Mackey) K.Hammer & Filat. – tetraploid triticale. Unstable, but used
in breeding
bridging. Includes the following crosses:
·
Triticum monococcum × Secale cereale, genome AARR;
·
Alternative
crosses, genome ABRR (mixogenome A/B).
·
× Triticosecale neoblaringhemii A.Camus – hexaploid triticale. Stable, currently
very successful in agriculture. May be produced by Secale cereale × Triticum turgidum, genome AABBRR.
·
× Triticosecale
rimpaui Wittm. – octaploid triticale. Not completely
stable, mainly historical importance. May be produced by Secale cereale × Triticum aestivum, genome AABBDDRR.
The
current treatment follows the Mac Key 2005 treatment of Triticum using
a broad species concept based on genome composition. Traditional
classifications used a narrow species concept based on the treatment of wheats
by Dorofeev et al., 1979, and hence produced many more species
names. The genome notation follows Taxonomy of wheat
§ Genome, with the rye genome notated as R.[12]
Biology and genetics
[edit]
|
This section needs
additional citations for verification. Please
help improve this
article by adding
citations to reliable sources in this section. Unsourced
material may be challenged and removed. (June 2021) (Learn
how and when to remove this message) |
Earlier
work with wheat-rye crosses was difficult due to low survival of the resulting
hybrid embryo and spontaneous chromosome
doubling. These two factors were difficult to predict and control. To improve
the viability of the embryo and thus avoid its abortion, in vitro culture techniques were
developed (Laibach, 1925).[full citation
needed] Colchicine was used as a chemical agent
to double the chromosomes.[13] After these
developments, a new era of triticale breeding was
introduced. Earlier triticale hybrids had four reproductive disorders,
namely meiotic instability, high aneuploid frequency, low fertility and shriveled seed (Muntzing
1939; Krolow 1966).[full citation
needed] Cytogenetical studies were
encouraged and well funded to overcome these problems.
It
is especially difficult to see the expression of rye genes in
the background of wheat cytoplasm and the
predominant wheat nuclear genome. This makes it
difficult to realise the potential of rye in disease resistance and ecological
adaptation.[citation needed]
Triticale
is essentially a self-fertilizing, or naturally inbred crop. This mode of reproduction
results in a more homozygous genome.
The crop is, however, adapted to this form of reproduction from an evolutionary
point of view. Cross-fertilization is also possible, but it is not the primary
form of reproduction.[citation needed]
Sr27 is
a stem rust resistance gene which is
commonly found in triticale.[14] Originally
from rye[15] (Imperial
rye),[16] now (as of
2021) widely found in triticale.[17] Located on
the 3A chromosome arm,[14] originally
from 3R.[18] Virulence
has been observed in field by Puccinia graminis f.
sp. secalis (Pgs) and in an artificial
cross Pgs × Puccinia graminis f.
sp. tritici (Pgt).[16] When
successful, Sr27 is among the few Srs that does
not even allow the underdeveloped uredinia and slight degree of sporulation
commonly allowed by most Srs.[15] Instead
there are necrotic or chlorotic flecks.[19] Deployment
in triticale in New South Wales and Queensland, Australia, however, rapidly showed
virulence between 1982 and 1984 – the first virulence on this gene in the
world.[20][15][18] (This was
especially associated with the cultivar Coorong.)[20][21] Therefore,
the International Maize and Wheat Improvement Center's triticale offerings were
tested and many were found to depend solely on Sr27.[21][18] Four years
later, in 1988 virulence was found in South Africa. Sr27 has become
less common in CIMMYT triticales since the mid-'80s.[18]
Conventional breeding approaches
[edit]
|
Top
triticale producers |
|
|
in
2022[22] |
|
|
Numbers
in million tonnes |
|
|
1. |
5.44 (38.42%) |
|
2. |
1.93 (13.63%) |
|
3. |
1.61 (11.37%) |
|
4. |
1.19 (8.4%) |
|
5. |
0.63 (4.45%) |
|
6. |
0.39 (2.75%) |
|
7. |
0.32 (2.26%) |
|
8. |
0.31 (2.19%) |
|
9. |
0.29 (2.05%) |
|
10. |
0.21 (1.48%) |
|
|
|
|
World total |
14.16 |
|
Source:
UN Food
and Agriculture Organization |
|
The
aim of a triticale breeding programme is mainly focused on the improvement of
quantitative traits, such as
grain yield, nutritional quality and plant height, as well as traits which are
more difficult to improve, such as earlier maturity and improved test weight (a
measure of bulk density). These traits are controlled by more than one gene.[23] Problems
arise, however, because such polygenic traits involve the integration
of several physiological processes in their expression. Thus the lack of
single-gene control (or simple inheritance) results in low trait heritability
(Zumelzú et al. 1998).
Since
the induction of the International Maize and Wheat Improvement Center triticale
breeding programme in 1964, the improvement in realised grain yield has been
remarkable. In 1968, at Ciudad Obregón, Sonora, in northwest Mexico,
the highest yielding triticale line produced 2.4 t/ha. Today, CIMMYT has
released high yielding spring triticale lines (e.g. Pollmer-2) which have
surpassed the 10 t/ha yield barrier under optimum production conditions.[24]
Based
on the commercial success of other hybrid crops, the use of hybrid triticales
as a strategy for enhancing yield in favourable, as well as marginal,
environments has proven successful over time. Earlier research conducted by
CIMMYT made use of a chemical hybridising agent to evaluate heterosis in hexaploid triticale hybrids. To select
the most promising parents for hybrid production, test crosses conducted in
various environments are required, because the variance of their specific
combining ability under differing environmental conditions is the most
important component in evaluating their potential as parents to produce
promising hybrids. The prediction of general combining ability of any triticale
plant from the performance of its parents is only moderate with respect to
grain yield. Commercially exploitable yield advantages of hybrid
triticale cultivars is
dependent on improving parent heterosis and on advances in inbred-line development.[citation needed]
Triticale
is useful as an animal feed grain. However, it is
necessary to improve its milling and bread-making quality aspects to increase
its potential for human consumption. The relationship between the constituent
wheat and rye genomes were noted to
produce meiotic irregularities, and genome instability and incompatibility
presented numerous problems when attempts were made to improve triticale. This
led to two alternative methods to study and improve its reproductive
performance, namely, the improvement of the number of grains per floral
spikelet and its meiotic behaviour. The number of grains per spikelet has an
associated low heritability value
(de Zumelzú et al. 1998). In improving yield, indirect selection (the selection
of correlated/related traits other than that to be improved) is not necessarily
as effective as direct selection. (Gallais 1984)[25]
Lodging
(the toppling over of the plant stem, especially under windy conditions)
resistance is a polygenically inherited
(expression is controlled by many genes) trait, and has thus been an important
breeding aim in the past.[26] The use of
dwarfing genes, known as Rht genes, which have been
incorporated from both Triticum and Secale, has
resulted in a decrease of up to 20 centimetres (7.9 in) in plant height
without causing any adverse effects.[citation needed]
A
2013 study found that hybrids have better yield stability under yield stress than do inbred lines.[27][28]
Application of newer techniques
[edit]
Abundant
information exists concerning R-genes (for disease resistance) in
wheat, and a continuously updated on-line catalogue, the Catalogue of Gene
Symbols, of these genes can be found at [1] Archived 2006-09-23 at the Wayback Machine. Another online database
of cereal rust resistance genes is available
at [2]. Unfortunately, less is known about rye
and particularly triticale R-genes. Many R-genes have been transferred to wheat
from its wild relatives, and appear in such papers and catalogues, thus making
them available for triticale breeding. The two mentioned databases are
significant contributors to improving the genetic variability of the
triticale gene pool through
gene (or more specifically, allele) provision. Genetic variability is essential
for progress in breeding. In addition, genetic variability can also be achieved
by producing new primary triticales, which essentially means the reconstitution
of triticale, and the development of various hybrids involving triticale, such
as triticale-rye hybrids. In this way, some chromosomes from the R genome have been
replaced by some from the D genome. The resulting so-called substitution and
translocation triticale facilitates the transfer of R-genes.[citation needed]
Introgression
[edit]
Introgression involves the crossing of
closely related plant relatives, and results in the transfer of 'blocks' of genes, i.e. larger
segments of chromosomes compared to single genes.[dubious – discuss] R-genes are generally introduced within
such blocks, which are usually incorporated/translocated/introgressed into the
distal (extreme) regions of chromosomes of the crop being
introgressed. Genes located in the proximal areas of chromosomes may be
completely linked (very closely spaced), thus preventing or severely
hampering recombination,
which is necessary to incorporate such blocks.[dubious – discuss][29] Molecular
markers (small lengths of DNA of a
characterized/known sequence) are used to 'tag' and thus track such
translocations.[30] A
weak colchicine solution has been employed to
increase the probability of recombination in the proximal chromosome regions,
and thus the introduction of the translocation to that region. The resultant
translocation of smaller blocks that indeed carry the R-gene(s) of interest has
decreased the probability of introducing unwanted genes.[31]
The Sr59 resistance
gene was introgressed into wheat from the 2R
chromosome of rye.[32] However
this was actually done through triticale.[32] Triticale
has been the amphiploid for
several such rye ⇨ wheat
introgressions.[32]
A
2014 study found that Ddw1 dwarfing gene from the rye
5R chromosome also provides Fusarium head blight (FHB)
resistance in this host.[33][34]
Production of doubled haploids
[edit]
Doubled haploid (DH) plants have the
potential to save much time in the development of inbred lines. This is achieved in a
single generation, as opposed to many, which would otherwise occupy much
physical space/facilities. DHs also express deleterious recessive alleles otherwise masked by dominance
effects in a genome containing more than one copy of each chromosome (and thus
more than one copy of each gene). Various techniques exist to create DHs.
The in vitro culture of anthers and microspores is most often used in cereals, including triticale.[35][36][37][38] These two
techniques are referred to as androgenesis, which refers to the development
of pollen. Many plant species and cultivars within species, including
triticale, are recalcitrant in that the success rate of achieving whole newly
generated (diploid) plants is very low. Genotype by culture medium interaction
is responsible for varying success rates, as is a high degree of microspore
abortion during culturing.[39][40][41][42] The
response of parental triticale lines to anther culture is known to be correlated
to the response of their progeny.[38][43][44] Chromosome
elimination is another method of producing DHs, and involves hybridisation of wheat with maize (Zea
mays L.), followed by auxin treatment
and the artificial rescue of the resultant haploid embryos before they
naturally abort. This technique is applied rather extensively to wheat.[45] Its success
is in large part due to the insensitivity of maize pollen to the crossability
inhibitor genes known as Kr1 and Kr2 that are expressed in the floral style of
many wheat cultivars.[46] The
technique is unfortunately less successful in triticale.[47] However, Imperata cylindrica (a
grass) was found to be just as effective as maize with
respect to the production of DHs in both wheat and
triticale.[48]
Application of molecular markers
[edit]
An
important advantage of biotechnology applied to plant breeding
is the speeding up of cultivar release that would otherwise take 8–12 years. It
is the process of selection that
is actually enhanced, i.e., retaining that which is desirable or promising and
ridding that which is not. This carries with it the aim of changing the genetic
structure of the plant population. The website [3] is a valuable resource for marker assisted
selection (MAS) protocols relating to R-genes in wheat. MAS is
a form of indirect selection.
The Catalogue of Gene Symbols mentioned earlier is an additional source
of molecular and morphological markers.
Again, triticale has not been well characterised with respect to molecular
markers, although an abundance of rye molecular markers makes it possible to
track rye chromosomes and segments thereof within a triticale background.[citation needed]
Yield
improvements of up to 20% have been achieved in hybrid triticale cultivars due
to heterosis.[49][50][51] This raises
the question of what inbred lines should be crossed (to produce hybrids) with
each other as parents to maximize yield in their hybrid progeny. This is termed
the 'combining ability' of the parental lines. The identification of good combining
ability at an early stage in the breeding programme can reduce the costs
associated with 'carrying' a large number of plants (literally thousands)
through it, and thus forms part of efficient selection. Combining ability is
assessed by taking into consideration all available information on descent (genetic relatedness), morphology,
qualitative (simply inherited) traits and biochemical and molecular markers.
Exceptionally little information exists on the use of molecular markers to
predict heterosis in triticale.[52] Molecular
markers are generally accepted as better predictors than morphological markers
(of agronomic traits) due to their
insensitivity to variation in environmental conditions.[citation needed]
A
useful molecular marker known as a simple sequence repeat (SSR)
is used in breeding with respect to selection. SSRs are segments of a genome
composed of tandem
repeats of a short sequence of nucleotides, usually two to six base pairs. They are popular tools in genetics
and breeding because of their relative abundance compared to other marker
types, a high degree of polymorphism (number of variants), and easy assaying by
polymerase chain reaction. However, they are expensive to identify and develop.
Comparative genome mapping has revealed a high degree of similarity in terms of
sequence colinearity between closely related crop species. This allows the
exchange of such markers within a group of related species, such as wheat, rye
and triticale. One study established a 58% and 39% transferability rate to
triticale from wheat and rye, respectively.[53] Transferability
refers to the phenomenon where the sequence of DNA nucleotides flanking the SSR
locus (position on the chromosome) is
sufficiently homologous (similar) between genomes of closely related species.
Thus, DNA primers (generally, a short sequence of nucleotides used to direct
the copying reaction during PCR) designed for one species can be used to detect
SSRs in related species. SSR markers are available in wheat and rye, but very
few, if any, are available for triticale.[53]
Genetic transformation
[edit]
The genetic
transformation of crops involves the incorporation of 'foreign'
genes or, rather, very small DNA fragments compared to introgression discussed
earlier. Amongst other uses, transformation is a useful tool to introduce new
traits or characteristics into the transformed crop. Two methods are commonly
employed: infectious bacterial-mediated
(usually Agrobacterium)
transfer and biolistics, with the
latter being most commonly applied to allopolyploid cereals such as
triticale. Agrobacterium-mediated transformation, however, holds
several advantages, such as a low level of DNA rearrangement in the transgenic plant, a low number of
introduced copies of the transforming DNA, stable integration of an a-priori
characterized T-DNA fragment (containing the DNA expressing the trait of
interest) and an expected higher level of transgene expression. Triticale has,
until recently, only been transformed via biolistics, with a 3.3% success rate.[54] Little has
been documented on Agrobacterium-mediated transformation of wheat:
while no data existed with respect to triticale until 2005, the success rate in
later work was nevertheless low.[55]
Research
[edit]
|
This section needs
additional citations for verification. Please
help improve this
article by adding
citations to reliable sources in this section. Unsourced
material may be challenged and removed. (June 2021) (Learn
how and when to remove this message) |
Triticale
holds much promise as a commercial crop, as it has the potential to address
specific problems within the cereal industry. Research is currently being
conducted worldwide in places like Stellenbosch
University in South Africa.
Conventional
plant breeding has helped establish triticale as a valuable crop, especially
where conditions are less favourable for wheat cultivation. Triticale being a
synthesized grain notwithstanding, many initial
limitations, such as an inability to reproduce due to infertility and seed
shrivelling, low yield and poor nutritional value, have been largely
eliminated.
Tissue culture techniques with respect to
wheat and triticale have seen continuous improvements, but the isolation and
culturing of individual microspores seems to hold the most promise. Many
molecular markers can be applied to marker-assisted gene transfer, but the
expression of R-genes in the new genetic background of triticale remains to be
investigated.[53] More than
750 wheat microsatellite primer pairs are available in public wheat breeding
programmes, and could be exploited in the development of SSRs in triticale.[53] Another
type of molecular marker, single nucleotide polymorphism (SNP), is likely to
have a significant impact on the future of triticale breeding.
Health concerns
[edit]
Main
article: Gluten-related
disorders
Like
both its hybrid parents – wheat and rye – triticale contains gluten and is therefore unsuitable for
people with gluten-related disorders, such as celiac disease, non-celiac
gluten sensitivity and wheat allergy, among others.[56]
In fiction
[edit]
An
episode of the popular TV series Star Trek, "The Trouble with
Tribbles", revolved around the protection of a grain developed
from triticale. This grain was named "quadro-triticale" by
writer David Gerrold at
the suggestion of producer Gene Coon, with four distinct lobes per
kernel. In that episode Mr. Spock correctly
attributes the ancestry of the nonfictional grain to 20th-century Canada.[57]
Indeed,
in 1953 the University of
Manitoba began the first North American triticale breeding
program. Early breeding efforts concentrated on developing a high-yield,
drought-tolerant human food crop species suitable for marginal wheat-producing
areas.[58] (Later in
the episode, Chekov claims
that the fictional quadro-triticale was a "Russian invention".[59])
A
later episode titled "More Tribbles,
More Troubles", in the animated
series, also written by Gerrold, dealt with
"quinto-triticale", an improvement on the original, having apparently
five lobes per kernel.[60]
Three
decades later the spinoff series Star Trek: Deep
Space Nine revisited quadro-triticale and the depredations
of the Tribbles in the episode "Trials and
Tribble-ations".[61]
References
[edit]
1.
^ Stace, C. A. (1987), "Triticale: A
Case of Nomenclatural Mistreatment", Taxon, 36 (2): 445–452, doi:10.2307/1221447, JSTOR 1221447
2.
^ "Triticale".
Grains and Legumes Nutrition Council. Retrieved 2025-05-22.
3.
^ "Food and Agricultural commodities production".
FAO Statistics Division. Archived from the
original on 2012-04-07. Retrieved 2016-04-05.
4.
^ Jump up to:a b Mergoum,
Mohamed; Gómez-Macpherson, Helena (2004). Triticale
improvement and production. FAO. ISBN 92-5-105182-8. Archived from the original on 2024-10-04.
Retrieved 2024-10-03.
5.
^ Larter,
E. N. "Triticale". Agriculture.
The Canadian Encyclopedia. Archived from the original on 2017-09-02.
Retrieved 2009-06-19.
6.
^ Sell, J.L.; Hodgson, G.C.; Shebeski, L.H.
(1962) Triticale as
a potential component of chick rations Archived 2013-01-15 at archive.today Canadian
Journal of Animal Science, Volume 42, Number 2
7.
^ Bird, S. H; Rowe, J. B.; Choct, M.; Stachiw, S.;
Tyler, P.; Thompson, R. D. (1999) In vitro fermentation of grain and enzymatic digestion of
cereal starch Recent Advances in Animal Nutrition, Vol 12, pp.
53–61
8.
^ France,
Marie (6 May 2019). "This distillery produces gin and vodka from locally
grown bio-dynamic triticale". www.spiritshunters.com/.
Retrieved 31 January 2023.
9.
^ Sharman,
Linda (April 2019). "WA distillery in High Spirits". Farm
Weekly Australia. Retrieved 31 January 2023.
10.^ "Triticale
history". International Triticale Association, Ghent
University, Belgium. 2023.
11.^ Colchicine Treatment and Toxicity | ICPS
12.^ Jump up to:a b Hammer,
Karl; Filatenko, Anna A.; Pistrick, Klaus (January 2011). "Taxonomic
remarks on Triticum L.
and ×Triticosecale Wittm". Genetic Resources and Crop
Evolution. 58 (1): 3–10. doi:10.1007/s10722-010-9590-4. S2CID 24403249.
13.^ Blakeslee,
Albert F.; Avery, Amos G. (December 1937). "Methods of Inducing Doubling
of Chromosomes in Plants". Journal of Heredity. 28 (12): 393–411. doi:10.1093/oxfordjournals.jhered.a104294.
14.^ Jump up to:a b "Sr27". Borlaug
Global Rust Initiative. Retrieved 2021-07-24.
15.^ Jump up to:a b c Singh,
Ravi P.; Hodson, David P.; Huerta-Espino, Julio; et al. (2011-09-08).
"The Emergence of Ug99 Races of the Stem Rust Fungus is a Threat to World
Wheat Production". Annual Review of Phytopathology. 49 (1): 465–481. doi:10.1146/annurev-phyto-072910-095423. ISSN 0066-4286. PMID 21568701.
16.^ Jump up to:a b Park,
Robert F.; Wellings, Colin R. (2012-09-08). "Somatic Hybridization in the
Uredinales". Annual Review of Phytopathology. 50 (1): 219–239. doi:10.1146/annurev-phyto-072910-095405. ISSN 0066-4286. PMID 22920559.
17.^ Upadhyaya, Narayana M.; Mago, Rohit; Panwar,
Vinay; et al. (2021). "Genomics accelerated isolation of a new stem rust
avirulence gene–wheat resistance gene pair" (PDF). Nature
Plants. 7 (9): 1220–1228. doi:10.1038/s41477-021-00971-5. ISSN 2055-0278. PMID 34294906. S2CID 236199741.
18.^ Jump up to:a b c d McIntosh,
RA; Wellings, CR; Park, RF (1995). Wheat Rusts - An Atlas of Resistance
Genes. Springer. ISBN 9789401040419.
19.^ Roelfs, A P (1988). "Genetic Control of
Phenotypes in Wheat Stem Rust". Annual
Review of Phytopathology. 26 (1). Annual Reviews: 351–367. doi:10.1146/annurev.py.26.090188.002031. ISSN 0066-4286.
20.^ Jump up to:a b McIntosh,
R. A.; Brown, G. N. (1997). "Anticipatory Breeding for Resistance to Rust
Diseases in Wheat". Annual
Review of Phytopathology. 35 (1). Annual Reviews: 311–326. doi:10.1146/annurev.phyto.35.1.311. ISSN 0066-4286. PMID 15012526.
21.^ Jump up to:a b Johnson,
R (1984). "A Critical Analysis of Durable Resistance". Annual
Review of Phytopathology. 22 (1): 309–330. doi:10.1146/annurev.py.22.090184.001521. ISSN 0066-4286.
22.^ "FAOSTAT". www.fao.org.
Retrieved 5 March 2024.
23.^ "Triticale Production Manual".
Alberta Agriculture and Food and Development, Government of Alberta,
Agricultural and Rural Development. Retrieved 2009-06-23.
24.^ A. R. Hede (2001). "A New Approach to Triticale Improvement" (PDF). Research
Highlights of the CIMMYT Wheat Program 1999–2000. Mexico, D. F.: Corporate
Communications, International Maize and Wheat Improvement Center. pp. 21–26.
Archived from the original (PDF) on
4 March 2016. Retrieved 18 July 2013.
25.^ Gallais, A. (19–24 June 1983). "Use of
Indirect Selection in Plant Breeding". In Hogenboon, N. G.; et al.
(eds.). Efficiency In Plant Breeding, Proc. 10th Congress Eucarpia. Pudoc,
Wageningen, The Netherlands. pp. 45–60.
26.^ Tikhnenko, N. D.; Tsvetkova, N. V.; Voylokov, A.
V. (23 August 2002). "The Effect of Parental Genotypes of Rye Lines on the
Development of Quantitative Traits in Primary Octoploid Triticale: Plant
Height". Russian Journal
of Genetics. 31 (1): 52–56. doi:10.1023/A:1022070810919. S2CID 2659383.
27.^ Bohra, Abhishek; Jha, Uday; Adhimoolam,
Premkumar; Bisht, Deepak; Singh, Narendra (2016). "Cytoplasmic male
sterility (CMS) in hybrid breeding in field crops". Plant Cell
Reports. 35 (5): 967–993. doi:10.1007/s00299-016-1949-3. eISSN 1432-203X. ISSN 0721-7714. PMID 26905724. S2CID 15935454.
28.^ Muhleisen,
Jonathan; Piepho, Hans; Maurer, Hans; Longin, Horst; Reif, Jochen (2013).
"Yield stability of hybrids versus lines in wheat, barley, and
triticale". Theoretical and Applied Genetics. 127 (2): 309–316. doi:10.1007/s00122-013-2219-1. eISSN 1432-2242. ISSN 0040-5752. PMID 24162154. S2CID 18542402.
29.^ Chelkowski, Jerzy; Tyrka, Miroslaw (15 October
2003). "Enhancing the resistance of triticale by using
genes from wheat and rye". Journal of Applied
Genetics. 45 (3): 283–295. PMID 15306719.
30.^ Lee,
T. G.; Hong, M. J.; Johnson, J. W.; Bland, D. E.; Kim, D. Y.; Seo, Y. W.
(2009). "Development and functional assessment of EST-derived 2RL-specific
markers for 2BS.2RL translocations". Theoretical and Applied
Genetics. 119 (4): 663–673. doi:10.1007/s00122-009-1077-3. PMID 19543880. S2CID 22773590.
31.^ Lukaszewski, Adam (1990). "Frequency of 1RS.1AL and 1RS.1BL Translocations in
United States Wheats". Crop Science. 30 (5): 1151–1153. doi:10.2135/cropsci1990.0011183X003000050041x.[permanent dead link]
32.^ Jump up to:a b c Herrera,
Leonardo; Gustavsson, Larisa; Åhman, Inger (2017). "A systematic review of rye (Secale cereale L.)
as a source of resistance to pathogens and pests in wheat (Triticum
aestivum L.)". Hereditas. 154 (1). BioMed Central: 1–9. doi:10.1186/s41065-017-0033-5. ISSN 1601-5223. PMC 5445327. PMID 28559761.
33.^ Al-Khayri, Jameel; Jain, Shri; Johnson, Dennis
(2019). Advances in Plant Breeding Strategies: Cereals. Springer Nature. pp. 363+420. ISBN 978-3-030-23108-8.
34.^ Kalih,
Rasha; Maurer, Hans; Hackauf, Bernd; Miedaner, Thomas (2014). "Effect of a
rye dwarfing gene on plant height, heading stage, and Fusarium head blight in
triticale (×Triticosecale Wittmack)". Theoretical and Applied
Genetics. 127 (7): 1527–1536. doi:10.1007/s00122-014-2316-9. ISSN 0040-5752. PMID 24852306. S2CID 14913718.
35.^ Kumari, Maya; Clarke, Heather; Small, Ian;
Siddique, Kadambot (2009). "Albinism in Plants: A Major Bottleneck in Wide
Hybridization, Androgenesis and Doubled Haploid Culture". Critical
Reviews in Plant Sciences. 28 (6): 393–409. Bibcode:2009CRvPS..28..393K. doi:10.1080/07352680903133252. S2CID 85298264.
36.^ Bernard,
S.; Charmet, G. (1984). "Diallel analysis of androgenetic plant production
in hexaploid Triticale (X. triticosecale, Wittmack)". Theoretical
and Applied Genetics. 69 (1): 55–61. doi:10.1007/BF00262539. PMID 24253624. S2CID 37533199.
37.^ González, J. M.; Jouve, N. (2000). "Improvement of Anther Culture Media for Haploid
Production in Triticale". Cereal Research
Communications. 28 (1–2): 65–72. doi:10.1007/BF03543575.[permanent dead link]
38.^ Jump up to:a b González,
J. M.; Jouve, N.; Hernádez, I. (January 18, 1997). "Analysis of anther culture response in hexaploid
triticale". Plant Breeding. 116 (3): 301–304. doi:10.1111/j.1439-0523.1997.tb01003.x.
39.^ Carena, Marcelo (2009). Carena, Marcelo J.
(ed.). Cereals. Handbook of Plant Breeding. Vol. 3 (1st ed.).
New York: Springer-Verlag. doi:10.1007/978-0-387-72297-9. ISBN 978-0-387-72294-8. OCLC 405546128.
40.^ González,
J. M.; Jouve, N. (2005). "Microspore
development during in vitro androgenesis in triticale". Biologia
Plantarum. 49 (1): 23–28. doi:10.1007/s10535-005-3028-4. S2CID 35661525.
41.^ Shariatpanahi, Mehran E.; Bal, Ugur;
Heberle-Bors, Erwin; Touraev, Alisher (2006). "Stresses applied for the re-programming of plant
microspores towards in vitro embryogenesis". Physiologia
Plantarum. 127 (4). John Wiley & Sons: 519–534. doi:10.1111/j.1399-3054.2006.00675.x. S2CID 84771294.
42.^ Tuvesson,
S.; Ljungberg, A.; Johansson, N.; Karlsson, K.-E.; Suijs, L. W.; Josset, J.-P.
(2000). "Large-scale production of wheat and triticale double haploids
through the use of a single-anther culture method". Plant
Breeding. 119 (6). Wiley-VCH GmbH: 455–459. doi:10.1046/j.1439-0523.2000.00536.x. S2CID 84991814.
43.^ Konzak, Calvin; Zhou, Huaping (1 December
1992). "Genetic control of green plant regeneration from
anther culture of wheat". Genome. 35 (6): 957–961. doi:10.1139/g92-146.[permanent dead link]
44.^ Andersen, S. B.; Tuvesson, I. K. D.; Pedersen,
S. (9 August 1989). "Nuclear genes affecting albinism in wheat (Triticum
aestivum L.) anther culture". Theoretical and Applied
Genetics. 78 (6 / December, 1989): 879–889. doi:10.1007/BF00266675. PMID 24226023. S2CID 9686842.
45.^ Bennett, M. D.; Laurie, D. A.; O'Donoughue, L.
S. (13–15 March 1989). "Wheat x maize and other wide sexual hybrids: their
potential for crop improvement and genetic manipulations". Gene
Manipulation in Plant Improvement II: Proceedings of the 19th Stadler Genetics
Symposium. New York: Plenum Press.
pp. 95–126.
46.^ Bennett, M. D.; Laurie, D. A. (31 August 1986).
"The effect of the crossability loci Kr1 and Kr2 on
fertilization frequency in hexaploid wheat x maize crosses". Theoretical
and Applied Genetics. 73 (3 / January, 1987): 403–409. doi:10.1007/BF00262508. PMID 24241002. S2CID 7530770.
47.^ Marcińska, I.; Wodzony, M.; Ponitka, A.;
Ślusarkiewicz-Jarzina, A.; Woźna, J. (26 January 1998). "Production of doubled haploids in triticale
(×Triticosecale Wittm.) by means of crosses with maize (Zea mays L.) using
picloram and dicamba". Plant Breeding. 117 (3): 211–215. doi:10.1111/j.1439-0523.1998.tb01928.x. Archived
from the original on 15 October 2012.
48.^ Chaudhary, H. K.; Pratap, A.; Sethi, G. S.
(August 16, 2004). "Relative efficiency of different Gramineae genera
for haploid induction in triticale and triticale x wheat hybrids through the
chromosome elimination technique". Plant Breeding. 124 (2
/ April, 2005): 147–153. doi:10.1111/j.1439-0523.2004.01059.x. Archived
from the original on January 5, 2013.
49.^ Góral, H.; et al. (1999). "Heterosis and Combining Ability in Spring Triticale
(x Triticosecale, Wittm.)". Plant Breeding and Seed
Science. 43: 25–34. Archived from the original on 2009-04-23.
Retrieved 2009-06-22.
50.^ Becker, H. C.; Oettler, G.; Hoppe, G. (March 8,
2001). "Heterosis for yield and other agronomic traits of
winter triticale F1 and F2 hybrids". Plant
Breeding. 120 (4): 351–353. doi:10.1046/j.1439-0523.2001.00624.x. Archived
from the original on January 5, 2013.
51.^ Burger, H.; Oettler, G.; Melchinger, A. E.
(August 2003). "Heterosis and combining ability for grain yield and
other agronomic traits in winter triticale". Plant
Breeding. 122 (4): 318–321. doi:10.1046/j.1439-0523.2003.00877.x. Archived
from the original on 2012-10-15.
52.^ Góral, Halina; Tyrka, Miroslaw; Spiss, Ludwik (2
March 2005). "Assessing genetic variation to predict the breeding
value of winter triticale cultivars and lines". Journal of
Applied Genetics. 46 (2): 125–131. PMID 15876679.
53.^ Jump up to:a b c d Baenziger,
P. S.; Kuleung, C.; Dweikat I. (5 December 2003). "Transferability of SSR
markers among wheat, rye, and triticale". Theoretical and Applied
Genetics. 108 (6 / April, 2004): 1147–1150. doi:10.1007/s00122-003-1532-5. PMID 15067402. S2CID 20537650.
54.^ Zimny, J.; Becker, D.; Brettschneider, R.; Lörz,
H. (10 October 1994). "Fertile, transgenic Triticale
(×Triticosecale Wittmack)". Molecular Breeding. 1 (2): 155–164. doi:10.1007/BF01249700. S2CID 27470553.
55.^ Binka, A.; Nadolska-Orczyk, A.; Przetakiewicz,
A.; Kopera, K.; Orczyk, W. (28 July 2005). "Efficient Method of
Agrobacterium-mediated Transformation for Triticale (x Triticosecale
Wittmack)". Journal of Plant Growth Regulation. 24 (1
/ March, 2005): 2–10. doi:10.1007/s00344-004-0046-y. S2CID 22996555.
56.^ Tovoli F, Masi C, Guidetti E, Negrini G,
Paterini P, Bolondi L (Mar 16, 2015). "Clinical and diagnostic aspects of gluten related
disorders". World
Journal of Clinical Cases. 3 (3): 275–84. doi:10.12998/wjcc.v3.i3.275. PMC 4360499. PMID 25789300.
57.^ Vinciguerra, Thomas (2017-12-29). "Star Trek: Inside "The Trouble with
Tribbles," 50 Years Later". Vanity Fair.
Retrieved 2021-07-20.
58.^ "Triticale". Government of Alberta,
Agriculture and Rural Development. Retrieved 11 September 2011.
59.^ Gerrold, David (1973). The Trouble
With Tribbles - the birth, sale, and final production of one episode. New
York: Ballantine Books.
pp. 1–293. ISBN 978-0-345-27671-1. OCLC 9265346. p. 202
60.^ "David Gerrold Recalls "More Tribbles" and
"Bem"". Star Trek.com. March 10, 2011.
Retrieved March 30, 2013.
61.^ "20 Years Later... "Trials and
Tribble-ations"". Star Trek.com. 2016-11-04.
Retrieved 2021-07-20.
|
hide Cereals and pseudocereals |
||||||||||
|
||||||||||
|
||||||||||
|
Emerging grain crops |
||||||||||
|
See also |
||||||||||
|
×Triticale |
||||||||||
|
×Triticosecale |
||||||||||
- This page was last edited on 22 May 2025, at 22:55 (UTC).
