باروت . (ا)بارود. یَمسو. (برهان ). بارو.
(در کلام قدما و اکابردیده نشده و مستحدث است ). (رشیدی ). شوره . دارو. (اسدی ). اَشوش
. (تذکره داود ضریر انطاکی ). ملح البارود.(دزی
ج 1). ملح صینی . (تذکره داود ضریر انطاکی
). حجر آسیوس . اسیوس . اسیوش . حجرالسیوس . (فهرست مخزن الادویه ). بارود. و به لغت
سریانی شوره را گویند که جزو اعظم باروت باشد و آن را نمک چینی هم گویند. (برهان ،
ذیل بارود). در اصل بمعنی شوره است و بمعنی داروی تفنگ مجاز است زیرا که جزواعظم آن
شوره باشد. (غیاث ). شوره را گویند که جزو اعظم باروت است و آن را نمک چینی هم گفته
اند. (انجمن آرا). نمک مخصوص است که نامهای دیگرش شوره و نمک چین است . (فرهنگ نظام
). بمعنی باروت که داروی تفنگ است .(انجمن آرا)... و بارو مخفف بارود است . میرزا عبدالقادر
تونی در ذکر تسخیر قلعه بست گوید :
همی سوخت هندو در آن کارزار
چو باروت کاندر وی افتد شرار.
سعید اشرف در تعریف تیغ گوید :
دشمنان را داده از یک جلوه در باد فنا
خرمن باروت را کافی بود برق شرار.
(آنندراج ).
به اصطلاح اهل مغرب اسم زهره اسیوس و به اصطلاح اهل عراق اسم شوره است و در ابقر
مذکور شد و او بخار مائیست که در شوره زار منعقد گردد بعد از رفع اجزاء کثیفه شبیه
بنمک سفید میشود و بجهت تحریک اشیاء ثقیله و تغییر معادن ، صقلبی (سالبه ) استخراج
نموده و بالفعل مرکب او را با گوگرد و زغال چوب بید بارود نامند. از سموم و در طب غیر
مستعمل است و ذرور او حابس خون جراحات تازه است با کمال سوزش و از خواص ابقر است که
چون آهن را به زرنیخ بیالایند و با مثل آن و مس بگدازند و بعد از آن شوره را بدان بپاشند
مس از آهن صعود نموده آهن در کمال نرمی گردد. (تحفه حکیم مومن : بارود). مولف مخزن الادویه پس از نقل
متن تحفه افزاید: و بالفعل اسم چیزی است مرکب از گوگرد و زغال چوب بید و یابادنجان
و یا بید انجیر و یا عشر و یا عروسه و یا امثال اینها و بالجمله چوب هر درختی که زود
به آتش درگیرد و آتش آن تند باشد. و شوره قلمی
به اوزان مختلفه مثلاً اگر از برای توپ و تفنگ باشد در یک آثار هندی شوره پنج توله
گوگرد و هفت ونیم توله زغال داخل میکنند و بسیار نرم کوبیده واگر بسیار تند خواهند
با بول انسان و یا با شراب دوآتشه یا یک آتشه خمیر کرده میکوبند و حبوب بسیار صغارساخته
خشک کرده استعمال مینمایند والا با آب . طبیعت آن : گرم و خشک در سوم و چهارم نیز گفته
اند. افعال و خواص آن : جالی و مقطع و مفتح سدد و جهت طحال و اوجاع ظهر نافع و ذرور
آن حابس نزف الدم جروح تازه است فوراً با کمال سوزش ، و چون موضع وجع مفاصل را خارها
زده بارود را نرم ساییده بر آن بمالند وجع آن را زایل گرداند. مضر گرده و ریه مصلح
آن کتیرا و عسل است . (مخزن الادویه ص 129). داود ضریر انطاکی در تذکره خود گوید: گرم خشک است در چهارم یا در وسط و سوم
بهترین آن براق زرین تازه و سفید است که زود از هم بپاشد. بلغم را ریشه کن کند... قدر
استعمال آن تا نیم درهم است وبدل آن ملح اندرانی است و نخستین کسی که آن را برای جلا
و تقطیع استخراج کرد طبیب «بقراط» و برای تحریک اثقال و تغییر معادن سالیسوس صقلبی
است . (از تذکره داود ضریر انطاکی ). و رجوع
به ص 70 همین کتاب شود. || بارود. (برهان ). یَمسو. (برهان ). بارو. (در کلام قدما
و اکابر دیده نشده و مستحدث است ) (رشیدی ). سُفوف . (شلیمر). گندک . رنجک . (لغت محلی
شوشتر نسخه خطی کتابخانه مولف ). دارو. داروی تفنگ . (برهان ) (غیاث ) (دزی
ج 1) (دمزن ). باروط. ترکیب قابل اشتعال . (دزی ج 1) . گردی که از زغال و گوگرد و شوره
سازند و در اسلحه آتشین بکار برند و گندک و
یمسو نیز گویند. و هر گردی که در اسلحه آتشین
بکار برده میشودخواه از اجزاء مذکور باشد و یا از چیز دیگر نیز باروت میگویند مانند
باروت بی دود و باروت سفید. و اختراع باروت را به حکمای اسلام نسبت میدهند و بعضی گفته
اند این گرد را دانشمندان چین در یک قرن قبل از تولد مسیح اختراع نموده اند. و اول
طایفه ای که آن را در جنگ بکار بردند در سال 747 هَ . ق . انگلیسی ها بودند و طریق
ساختن آن تا یک مدتی مخفی بود و جز انگلیسها کسی نمیدانست و تجار آن را از انگستان
خریده به سایر جاها حمل میکردند و زیادتر از دو کیلو گرم بکسی نمیفروختند. باری باروت
خوب و اعلا مرکب است از 75 جزء شوره و 12/5 جزء گوگرد و همان مقدار زغال . (ناظم الاطباء).
ترکیبی است از پنج قسمت شوره و یک قسمت گوگرد و یک قسمت زغال بید. گوگرد و شوره را
با هم نرم کوبیده وزغال را در آب شسته که گرد و خاکستر آن برود. سپس هر سه را در هاون
سنگی ریخته با دسته چوبی بکوبند و چون بخشکی
گراید با آب رطوبت دهند تا رنگش نیلی شود و پس از آن در ظرف چرمی کنند تا چهار ساعت
بسرعت حرکت دهند و چون مخلوط شود به آب رطوبت دهند و مانند خمیر بگسترانند و با چاقو
قطعه قطعه سازند و در غربال آهنین بیزند و در ظرفی کنند و حرکت دهند تا دانه دانه و
مجلی گردد و در حرارت 66 درجه بتدریج خشک سازند و بکار برند. (از منتخب الخواص : بارود).
از اوایل قرن مسیحی این ماده شناخته شده
است . چینی ها از آن درحرارت صنعتی استفاده میکردند. آتش گرگوا در قرن هفتم نوعی آتش
انفجاری بود. تا قرن 14 م . اندیشه بکار بردن
آن در تیراندازی هنوز بوجود نیامده بود. انگلیس ها آن را در 1346 م . در جنگ کرسی بکار
بردند. اسامی راجر بیکن ، آلبرت کبیر و برتولد شواتز مترادف ورود باروت در توپخانه اروپاست . باروت از چند نوع مواد مختلف ترکیب میشود
که نیروی ناگهانی قابل ملاحظه ای بوجود می آورد که از آزاد ساختن گاز فراوان با حرارت
زیاد بدست می آید که نتیجه عکس العمل شیمیایی
است . نتایج حاصله از احتراق باروت بستگی بسرعت اشتعال آن دارد اگر سرعت اشتعال زیاد
باشد فشار و قدرت حاصله از گاز آنی بوده و ایجاد تخریب بسیار میکند. باروت یا سیاه
است و یا قهوه ای . باروت سیاه از دو عنصر سریعالاشتعال ساخته میشود که یکی کربن و
دیگری گوگرد به اضافه جسمی که قبول اکسیژن
کند. ازین سه ماده ترکیبی کربن تاثیرش در ساختن
باروت از دیگر مواد بیشتر است . مواد این سه عنصر قابل تمیز است و تابلو زیر بدست می
آید و مختص بباروت سیاهی است که در فرانسه بکار میرود. (لاروس کبیر).
جرجی زیدان در تاریخ تمدن خود آرد: فرنگی
ها اختراع مهمی را بخود نسبت میدهند در صورتی که این اختراع از عربها بوده است . بنابگفته فرنگیان شخصی بنام شوارتز در سال 1320 م . (719
هَ . ق .) باروت را اختراع کرده است اما یک راهب انگلیسی موسوم به راجر بیکن که در
قرن 13 م . میزیسته به ترکیباتی اشاره کرده که در زمان وی معمول بوده و به باروت شباهت
داشته است . حقیقت مطلب آنست که عربها پیش از دیگران استعمال باروت را میدانستند و
اگر آنها باروت را اختراع نکرده باشند لااقل باروت توسط آنان بمردم قرون وسطی منتقل
شده است . کوندی خاورشناس اسپانیولی که در سال 1820 در گذشته صریحاً نوشته است که عربها
در جنگ سر قوسه در سال 1118 م . اسلحه آتشین
بکار بردند. از آن گذشته مورخین عرب نیز در ضمن تاریخ جنگهای اسلامی در قرن سیزده میلادی
(در افریقا) از اسلحه آتشین نام برده اند چنانکه
ابن خلدون راجع بجنگ ابو یوسف سلطان مراکش برای تسخیر سجلماسه و بیرون آوردن آن از
دست فرمانروایان عبدالواد (672 هَ . ق ./ 1273 م .) چنین میگوید:«همین که سلطان ابویوسف
بلاد مغرب (افریقا) را گشود شهرها و دژهای آن را بزیر فرمان درآورد و بر مرکز خلافت
خاندان عبدالمومن دست یافته آثار آنها را برانداخت و شهرهای طنجه و سبته لنگرگاه و
سرحد مغرب را گشود آنگاه بطرف بلاد قبله توجه کرده ، مصمم شد سجلماسه را از فرمانروایان
عبدالواد بستاند و دعوت آنان را برانداخته بنام خود دعوت کند. لذا در ماه رجب 672 هَ
.ق . لشکر بدانجا کشید و سپاهیانی از عرب و بربر و زناته گرد آورد و منجنیق و تانک
چوبی و گردونه های نقب جهنده (آتش یونانی ) با ریگ های آهنین و اندام نقب انداز همراه
برد و از انباری که با آتش و باروت بطور شگفت آوری مشتعل شده بود بدشمن آتش می افکند
و قدرت خداوند از این عملیات هولناک ظاهر میگشت . خلاصه یکسال تمام شب و روز آنجا را
حصار داده جنگید تا اینکه روزی دیوارهای برج بر اثر سنگباران کردن از منجنیق فروریخت
و سوراخی در آن پدید آمد و سپاهیان از آن سوراخ بشهر هجوم آوردند.» این گفته ابن خلدون
گواهی میدهد که پیش از شوارتز عربها باروت داشتند، چه شوارتز (مخترع باروت بقول فرنگی
ها) در سال 1320 م . میزیسته و عربها در سال 1273 در جنگ مذکور باروت استعمال کرده
اند. از آن گذشته عربها در سال 13 م . در کتب مربوطه توصیفی از باروت کرده اند که کاملاً
شبیه باروت کنونی می باشد. در کتابخانه پترزبورگ
(لنین گراد) تصویر دو مرد عرب است که اسلحه
آتشین بکار میبرند. (از ترجمه تاریخ
تمدن اسلامی جرجی زیدان ج 1 صص 184-185: اخترع باروت ) و متن عربی ص 145. || مثل باروت
، سخت و تند و تیز. آتشین . رجوع به تذکرةالملوک چ دوم ص 29 و مجمل التواریخ گلستانه
ص 23 و فرهنگ شعوری ج 1 ورق 156 و لغات تاریخیه و جغرافیه ترکی ج 2 و اسیوس و دارو
و بارود شود.
//////////////
بارود
بفتح با و الف و ضم راء مهمله و سکون واو
و دال مهمله و بفارسی و بهندی باروت بتاء مثناه فوقانیه بجای دال نامند و باصطلاح اهل
مغرب اسم زهره الاسیوس است و در اسیوس مذکور شد و باصطلاح اهل عراق اسم شوره است و
در ابقر ذکر یافت و بالفعل اسم چیزی است مرکب از کوکرد و زغال چوب بید و یا بادنجان
و یا بید انجیر و یا عشر و یا اروسه و یا امثال اینها و بالجمله چوب هر درختی که زود
بآتش درکیرد و آتش آن تند باشد و شورۀ قلمی باوزان مختلفه مثلا اکر از برای توپ و تفنک
باشد در یک آثار هندی شوره پنج توله کوکرد و هفت و نیم توله زغال داخل می کنند و بسیار
نرم کوبیده اکر بسیار تند خواهند با بول انسان و یا با شراب دو آتشه یا یک آتشه خمیر
کرده می کوبند و حبوب بسیار صغار ساخته خشک کرده استعمال می نمایند و الا با آب
طبیعت آن
کرم و خشک در سوم و در چهارم نیز کفته اند
افعال و خواص آن
جالی و مقطع و مفتح سدد و جهت طحال و اوجاع
ظهر نافع و ذرور آن حابس نزف الدم جروح تازه است فورا با کمال سوزش و چون موضع وجع
مفاصل را خارها زده بارود را نرم سائیده بر ان بمالند وجع آن را زائل کرداند مضر کرده
و رئه مصلح آن کثیرا و عسل است.
مخزن الادویه عقیلی خراسانی
/////////////
باروت به گفته دهخدا همان «بارود» است و
میگوید در برهان قاطع آمده: به سریانی، شوره را «بارود» گویند... ترکیب شوره را با
گوگرد و زغال چوب بید و یا بادنجان یا هر چوبی که زغالش خوب بسوزد باروت نامند.[۱]
باروت مادهای است که بهسرعت میسوزد و
از همین رو در سلاحهای گرم بهعنوان ماده پیشرانه بکار میرود. باروت از ترکیب مادههای
پتاسیم نیترات، کربن و سولفور ساخته میشود. باروت میتواند از ذغال وپتاسیم نیترات نیز
ساخته شود ولی نه به کیفیتی که با سولفور مخلوط باشد، زیرا ماده سولفور یکی از مواد
فرار و بسیار قابل احتراق و انفجار است. باروت به دو دسته تقسیم میشود.
با قدرت انفجار پایین: دارای مواد انفجاری
کم قدرت و مواد درونی آن به صورت کامل احتراق نمییابند.
با قدرت انفجار فوقالعاده زیاد: این دسته
از باروتها دارای قدرت انفجاری بسیار بالا هستند.
باروتها دو گونه هستند:
باروت سیاه
باروت بیدود
موشک چینی اولیه
باروت سیاه نخستین گونه باروت بود که بدست
بشر ساخته شد. اختراع آن را نزدیک به قرنهای ۷ تا ۹ میلادی به چینیها، مسلمانان و
حتی به راجر بیکن (کیمیاگر انگلیسی سده ۱۳ میلادی) نسبت میدهند. [۲][۳]
در گذشته از کود کبوتر که در کبوترخانه
ها جمع آوری میشد، برای تولید باروت استفاده میکردند. به همین دلیل اقتصادی قابل توجه،
تعداد کبوتر خانه در دوران صفوی یکباره چندین برابر شد. از این رو شاه عباس صفوی مالیات
نسبتاً سنگینی بر کبوتر خانه ها بست. امروزه هنوز در روستا ها از کود کبوتر چنین استفاده
ای میشود.
نگارخانه[ویرایش]
武经总要全前集卷十二 火药制法.jpg
武经总要前集卷十二 霹雳火球制法.jpg
武经总要全前集卷十二 霹雳火球图.jpg
武经总要 竹火鷂 鐵嘴火鷂.jpg
منابع[ویرایش]
پرش به بالا ↑ مقاله باروت در فرهنگ دهخدا
[۱]
پرش به بالا ↑ پروفسور هاینتس والتر ویلد،
متخصص مواد منفجره در دانشگاه کلائوس تال آلمان
پرش به بالا ↑ ویکیپدیای آلمانی
////////////
البارود هو خليط سريع الاشتعال أو مادة
متفجرة دافعة صلبة قابلة لإحداث تفاعل ناشر للحرارة في معزل عن الهواء الخارجي مع إصدار
كميات كبيرة من الغازات وبعض أنواع البارود مركبات بوليميرية عالية التكثف شديدة الاحتراق
يمكن تصنيفها في صنفين بحسب تركيب مادة البارود والعناصر التي تتألف منها : البارود
المتغاير الخواص منه البارود الأسود أو البارود الدخاني والبارود الثابت الخواص القابل
للانضغاط كالبارود القطني اللادخاني يستعمل لدفع المقذوفات أو لصنع القنابل ويتكون
من ملح البارود والكبريت والفحم، كان يستعمل في دفع القذائف الحربية وصنع القنابل حتى
الحرب العالمية الأولى حيث استبدل البارود المستخدم لدفع المقذوفات بالكوردايت واستبدل
البارود المستخدم لصنع المسدسات بالديناميت. نسب مكونات البارود: ملح البارود 75%,
فحم 15%, كبريت 10%. ملح البارود واسمه العلمي "نترات البوتاسيوم" وتركيبه
"KNO3" هو المادة المؤكسدة
حيث يحتوي على ثلاث ذرات أكسجين يمكنها الارتباط مع ذرات الفحم والكبريت لإحداث الاشتعال
المطلوب. معادلة الاحتراق هي كالتالي:
2KNO3 + S + 3C →
K2S + N2 + 3CO2
تاريخه[عدل]
صورة من كتاب العز والرفعة.
كان أول من استخدم البارود هم المسلمون
العرب حيث يُذكر في ثورة الزنج أن العمال الزنوج في العراق مدينة البصرة كانوا ينقون
ملح البارود عام 71هـ/690م, وقد عرف الكيميائيون المسلمون العرب الأوائل ملح البارود
في القرن السابع حيث كان يستعمل لأغراض حربية مثل نسف الحصون وكذلك للألعاب النارية,
وأول استخدام للمدفع كان في حصار سرقسطة في عام 511هـ/1118م ثم في عام 672هـ/1273م
حيث استخدمه حاكم مسلم عربي هو السلطان المريني أبي يوسف، في حصاره لمدينة سجلماسة.
المعروف أن أول من استخدم البنادق والمسدسات والقنابل اليدوية هم المسلمون العرب[1]
حيث استعملوها في الدفاع عن غرناطة في القرن الرابع عشر. ولما سقطت الأندلس بيد الأسبان
اخذوا البندقية العربية التي كانت تدعى "القربينة" منهم واستعملوها في القضاء
على الهنود الحمر.
في كتاب "الفروسية والمكائد الحربية"
لحسن الرماح المتوفى سنة 693هـ/1294م هناك شرح لصناعة أنواع عديدة من الصواريخ
"الطيار" تختلف بالمدة والسرعة والحجم وكذلك نوع من الطوربيدات يصطدم بالسفن
وينفجر.
أستخدم العثمانيون المدافع والصواريخ في
حصار القسطنطينية 857هـ/1453م، وكانت أحجام مدافعهم كبيرة حيث يصل طول الماسورة إلى
8 أمتار وقطر الفوهه 75ســــم.
و البارود من أقدم المتفجرات ولا يمكن على
وجه الدقة تحديد من أول من إخترعه ،كما لا يعرف أصل تسميته بالعربية ويبدو أنها من
السريانية وبعد أن توصل العرب إلى معرفة خواص ملح الصخر والبارود في أوائل القرن السابع
للهجرة شملوه تحت اسم مادة 'نفط' التي صار لها منذ ذلك الحين معان جديدة وتذكر المصادر
الإسبانية والعربية في الأندلس والمغرب عرفوا البارود واستعملوا المدافع في الحرب منذ
أواخر القرن السابع عشر ميلادي وبمرور الوقت صارت كلمة بارود تعني البارود نفسه أو
كحل البارود (ذرور) وصار ملح البارود هو الاسم الذي يطلق على ملح الصخر، ومن البارود
اشتقت كلمة البارودة التي تعني البندقية.
لم يستعمل البارود الأسود في أغراض التعدين
قبل القرن17 م إلا أن استخدامه في المناجم لم ينتشر إلا في أوائل القرن 18 لأسباب كثيرة
منها ارتفاع تكاليف تحضيره وعدم توافر أدوات الثقب المناسبة والخوف من حدوث إنهيارت
في سقف المنجم، أما أول استخدام للبارود في أعمال الهندسة المدنية والعمارة فكان في
1679 إبان حفر نفق مالباس عند قناة دي ميدي في فرنسا وقد ظل البارود الأسود المادة
المتفجرة والوحيدة المستعملة في المقالع وأعمال الطرق حتى منتصف القرن 19 وظل الدافعة
الوحية حتى نهاية ذلك القرن إلى أن تم التوصل إلى بدائل أكثر أمنا من البارود الأسود
وخاصة الديناميت المحسن والبارود اللادخاني.
و لم يعد يسمح باستعمال البارود الأسود
في المناجم تحت الأرض ، لكنه مايزال يستعمل في المقالع المكشوفة وفي بعض الأغراض الخاصة
في الاستخدامات العسكرية.
إن اختراع أول مادة شديدة الانفجار ينسب
عموما إلى الكيميائي السويسري من أصل ألماني كرستيان شونباينchristian
fridrich schomein الذي توصل
في عام 1845 إلى صنع البارود القطني (النتروسيلولوز) بنقع القطن في مزيج من حمض الازوت
وحمض الكبريت ثم غسل الناتج بالماء لا زالة بقايا الحمض. و في عام 1860 توصل ضابط رو
سي يدعى أرنست شولتزه e.schultze
إلى صنع مادة دافعة شبيهة بسابقتها من نقع قطع صغيرة من الخشب في حمض
الاروت وبعد إزالة بقايا الحمض أشبع الناتج بالابريوم ونترات البوتاسيوم وكان البارود
الذي حصل عليه شولتزه وحمل اسمه لبنادق الصيد، ولكنه قليل الصلاحية وأكثر البنادق الحربية.
و في سنة 1884 توصل الكيميائي الفرنسي بول
فيي paul vieill إلى صنع بارود
دخاني غرواني مكثف هو powder B قريب في صيغته من البارود الادخاني المعروف اليوم.
و في عام 1888 أنتج الكيميائي السويدي ألفرد
نوبل alfred nebelمادة جديدة أسماها
الستيت ballestiteوتتألف من مزيج هلامي
القوام gelatinizedمن النتروهلولوز
40 % المخفف الأزوت مع النيتروغليسرين60 %وقطعهاشرائح ،وقد ظلت هذه المادة تستعمل بنجاح
مدة زادت على 75 عاما. طور البريطانيون فيما بعد عددا من المنتجات المماثلة لها أطلقو
عليها إسم الكوردايت. في عام 1909م توصلت الولايات المتحدة الأمركية إلى نوع من البارود
الادخاني أكثر أمانا أساسه القطن المنترج nitrocottonالحاوي على نسبة منخفضة من الأزوت ويدعى بيروسلولوز pynocellulose،وهو قابل للانحلال في الإيثر
والكحول وقد تبين أن هذا النوع من البارود يصلح للاستعمال في جميع أنواع المدافع، وكان
المادة الدافعة الرئسية المستخدمة في الحرب العالمية الأولى.
اقسامه[عدل]
طاحونة البارود
و بعض أنواع البارود مركبات بوليميرية عالية
التكثف شديدة الاحتراق يمكن تصنيفها في صنفين بحسب تركيب مادة البارود والعناصر التي
تتألف منها:
البارود الأسود (الدخاني):نسمي هذا النوع
من البارود أسودللونه الذي يغلب عليه لون فحم الخشب وسميا دخانيا لأن الغازات المنطلقة
عند احتراقه ممزوجة بدخان أسود ،يتألف من المواد الصلبة الناتجة عن بقايا الاحتراق.
يتألف البارود الأسود من خليط جيد المزج
بين نترات البوتاسيوم أو الصوديوم وفحم الخشب الكبريت بنسب تختلف بحسب الغاية المستخدم
لها، ويستعمل في صنع الحشوات الدافعة والحشوات المتفجرة لمقذوفات الأسلحة النارية المقذوفات
الصلبة وفي الألعاب النارية وفي المقالع وفي صنع الفتيل المشتعل
احتراق البارود الأسود :البارود الأسود
قليل الحساسية بالاحتكاك أو الصدمات ولكي يحترق أو يتفجر لابد من وجود مشعل يحرق البارود
بطبقات متوازية في الإتجاه العمودي على سطح الاحتراق فتنتقل موجة الاحتراق والحرارة
من طبقة إلى أخرى تليها، إذ يسبعد في هذه الحالة تسرب نواتج الاحتراق والحرارة إلى
داخل المادة نفسها وتتوفر في الوقت نفسه في إمكانية التحكم في السرعة الإجمالية لتشكل
غازات الاحتراق بمقياس الزمن عن طريق إعطاء مادة البارود الشكل المناسب أما سرعة احتراق
البارود تعتمد على قوام مادته ودرجة الحرارة الأولية والضغط ويمكن التحكم فيها بواسطة
الإضافات المختلفة.
الفتيل المشتعل:في سنة 1831 توصل تاجر جلد
بريطاني وليم بكفورد william bikafordإلى اختراع مشعل أمين للعمل في المناجم يتألف من فتيل منسوج محشو بالبارود
الأسود، ثم يطلى الفتيل بمادة مانعة لرطوبة ويغلق بنسيج اخر أو بمادة لدنة.
يوفر الفتيل المشتعل وسيلة أمنية يمكن الركون
إليها لإيصال النار إلى الحشوة المتفجرة ،و يعتمد توقيت الانفجار على طول الفتيل وهو
دقيق إلى درجة كبيرة ولا يتأثر بالعوامل الجوية أو الماء.
البارود اللادخاني:أو البارود القطني مادة
متفجرة دافعة أساسها النتروسيلولوز ((C6H7O2)OH 3.X)ONO2(X)n
والنتروسيلولوز مادة بيضاء ليفية القوام تشبه القطن ومن أهم ماتتصف به
اختلاف مواصفاتها الفيزيائية والكيميائية باختلاف نسبة ماتحتويه من الازوت (النتروجين)يستعمل
البارود اللادخاني في ذخائر الأسلحة النارية والصواريخ الصغيرة التي تعمل بالوقود الصلب
وفي أدوات العمل التي تتطلب ضغطا عاليا وسرعة التنفيذ ،و هو ينتج على شكل أقراص أو
صفيحات أو أصطوانات أو حبال أو كريات من حجوم مختلفة ويسمى "اللادخانيا"أو
"غير مدخن" للتفريق بينه وبين البارود الأسود المدخن.
و البارود اللادخاني سريع الاشتعال لايحتاج
إلى أكسجين خارجي وينتج من احتراقه كميات هائلة من الغازات العديمة اللون والحرارة
عالية وتعتمد سرعة الاحتراق وحجم غازات المنطلقة على تركيب حبيبات البارود وشكلها ومساحة
سطح الاحتراق ،وتزداد سرعة الاحتراق بازدياد الضغط ،و يتفوق البارود الادخاني على البارود
الأسود بصفاته الدفعية العالية وعدم تركه بقايا احتراق تذكر وقلة امتصاصه للرطوبة ومحافظته
على مواصفاته عند تخزينه ،في شروط طبعتة لمدة طويلة وقلة حساسية للمؤثرات الخارجية
وإمكانية تشكيله بأشكال وحجوم مختلفة.
أنواع البارود اللادخانييستعمل البارود
اللادخاني اليوم على نطاق واسع وهو يصنف عموما فب صنفين:وحيد الأساس وثنائي الأساس
،يحتوي البارود اللادخاني الوحيد الأساس ،على النتروسلولوز مع بعض الإضافات، وقد حل
فيه سيليلوز الخشب محل ألياف القطن، ولا تزيد نسبة الازوت فيه على 12.5-13.5% أما البارود
الثنائي الأساس وهو أكثر أنواعه فيشتمل على نسبة 70-80% نتروسيلولوز و 20-30% نتروغليسرين
وقد يضاف إلى الصنفين إضافات لضمان ثباتهما وتحسين مواصفاتهما، أما أشهر البارود اللادخاني
فهي البارود البيروكسيليني والبارودالنتروغليسيرين وبارود الأمونيوم وثالث تولوين.
وقود الصواريخ الجاف (الصلب) هو الاسم الذي
يطلق على البارود الذي يستخدم وقودا في المحركات الصاروخية، وهو مركبات بوليميرية حديثة
تتفاعل بالحرارة وتتألف عادة من بيروكلورات الأمونيوم (مؤكسد)، ويتمتع الوقود الصاروخي
الجاف بميزات كثيرة يتفوق بها على أنواع الوقود الباليستية الأخرى، فقوة دفعه أكبر
وسرعة احتراقه أقل اعتمادا على الضغط ودرجة الحرارة ومجال التحكم في سرعة احتراقه كبيرة
عن طريق ضغط الإضافات المختلفة والتحكم في مواصفاتها الفيزيائية والميكانيكية وبسبب
مرونة هذا الوقود وإمكانية التحكم في شكله الخارجي يمكن تثبيته مباشرة على جدران المحرك
الصاروخي الأمر الذي يزيد من معامل ملء المحرك بالوقود.
المصادر[عدل]
^ مجلة العربي سبتمبر 1987 ص116
كتاب أعجوبة الحضارة الإسلامية.
كتاب من مظاهر التمدن الإسلامي.
صفحة عن مكتشفات العرب (إنجليزي)
كتاب الموسوعة العربية.
///////////////
به آذری باریت:
باریت (باروت)، سولفور، کؤمور و پوتاسیومنیتراتدان
اولوشان بیر پارتلاییجی مادهدیر. باریت مرمیلرین آتیلماسینا و راکتلرین حرکت ائدیلمهسینه
و یاشقا مقصدلر ایچین ایستیفاده ائدیلیر.
پارالئل لایلارلا یانما زامانی ایستی لیک
بیرلایدان باشقاسینا اؤتورولور. بونونلا یانما زامانی گاز عمله گلمه سینی تنظیم له
مک اولور. بو دنجیین پلچوسوندان و یانما سرعتیندن اصیلی اولور. دنجیین اؤلچوسو اونلارین
فورماسی ، هندسی اؤلچولری ایله تعیین اولونور. یانما زامانی بو اؤلچولر کیچیله و یا
بؤیویه بیلر. بئله یانمایا دئقرئسیو و یا پروقرئسسیو دئییلیر.گاز عمله گلمسینده معین
قایدا اویغونلوق الده ائتمک اوچون دنجیکلر علاوه یانمایان ماده لرله اؤرتولورلر. باریتین
یانما سرعتینه اونون ترکیبی ، باشلانغیج دما و تزییق تاثیر ائدیر.
ایکی نوع باریت مؤوجوددور: تۆتونسوز (نیترو
سئلولوز) و تۆتونلو (قاریشیق). راکت لرده تطبیق اولونان باریت لارا برک راکت یاناجاغی
دا دئییلیر. نیتروسئلولوز ترکیبلی باریت لاردا اساس کومپونئنت نیتروسئلولوز و حل لئدیجی
مایع دیر. بوندا علاوه باریت لارین ترکیبینده چوکونتولر ده واردیر.
اننوی اولاراق باریت پارتلاییجی ماده کیمی
تانینیر. اصلینده ایسه او بئله دئییل. باریتی اوزون مدت ساخلادیقدا او بریزانت پارتلاییجی
ماده یه چئوریلیر. بو آتما زامانی سیلاحین لوله یینی زده له یه بیلر.
//////////////
به عبری اواک:
אבק השריפה הוא חומר
בעירה שהומצא, ככל הנראה, על ידי הסינים במאה ה-9 (למרות שקיימים אזכורים לשימוש בחומר
דמוי אבק שריפה כבר במאה ה-3 לפנה"ס על ידי האלכימאי הסיני מה ג'ון).
כבר במאה ה-10 השתמשו
הסינים ברומח אש עבור מטרות צבאיות. במאה ה-13 גילו גם האירופים את הפוטנציאל ההרסני
הגלום באבקה והשתמשו בה למטרות צבאיות, תותחים ורובים. המקור להגעת הטכנולוגיה לאירופה
ולארצות ערב הוא ככל הנראה באימפריה המונגולית, ששיא פריחתה היה באמצע המאה ה-13, ושטחה
כלל חלקים מאירופה ומהמזרח התיכון.
ישנם סוגים שונים
ומגוונים של אבקות שריפה. במשפחה זו נכללים חומרים דליקים המשחררים בעת בעירתם אור,
חום וגזים.
///////////
به کردی بارود:
Barûd, di sedsela 9'an de li Çînê tê vedîtin. Di ss 13'emîn de li Ewropayê tê bikaranîn. Di ss 16'an de ji hêla
kîmyagerên elmanî ve Nîtroglîserîn û Dînamît tê dîtin. Barût ji Kerkûd (S), Azot (N) û Karbon (C) ê pêk tê. Bi bandora agir, basinc, tevger
û girnozbûnê pir zû diteqe.
///////////////
به اردو باروت:
بارود، آتش گیر مادے کی ایک قسم ہے جو کہ
گندھک، کوئلہ اور پوٹاشیم نائٹریٹ سے مل کر بنتا ہے۔ بارود پوٹاشیم نائٹریٹ اور کوئلہ
ملانے سے بھی بن سکتا ہے مگر سلفر کے بغیر اس کی قوت اور توانائی کا اخراج نسبتاً کم
ہوتا ہے۔ بارود جلدی جلنے والا مادہ ہوتا ہے اور اس کے جلنے سے گرم گیس کا اخراج ہوتا
ہے جو کہ کاربن ڈائی آکسائیڈ، پانی اور نائٹروجن پر مشتمل ہوتی ہے۔ اس کے علاوہ باقی
بچ جانے والا مادہ پوٹاشیم سلفائیڈ ہوتا ہے۔[1] بارود کے جلد جلنے اور وسیع مقدار میں
حرارت اور گیس کی پیداوار کی وجہ سے اسے ہتھیاروں اور دوسرے آتش گیر مادوں میں استعمال
کیا جاتا ہے۔ بارود کے وسیع معنی میں کوئی بھی آتش گیر مادہ لیا جا سکتا ہے۔ جدید ہتھیاروں
میں روایتی بارود کا استعمال موقوف کیا جا چکا ہے جو کہ اس مقالے میں بیان کیا گیا
ہے۔ اس روایتی بارود کی بجائے ان ہتھیاروں میں دھویں کے بغیر بارودی مواد استعمال میں
لایا جا رہا ہے۔ قدیم ہتھیاروں یا کئی ممالک میں اب بھی دستیاب روایتی ہتھیاروں میں
یہ بارود اب بھی استعمال کیا جاتا ہے۔
بارود کو درجہ بندی کے لحاظ سے آتش گیر
مادہ مانا جاتا ہے، کیونکہ یہ بہت ہی آہستہ ختم ہوتا ہے اور اس کے جلنے کے نتیجے میں
نسبتاً کم چمک اور دھماکہ ہوتا ہے۔ گولی کے پچھلے حصے میں استعمال ہونے والا بارود
جلنے کے نتیجے میں اتنا دباؤ پیدا کرتا ہے جو گولی کو تیز رفتار سے آگے کی جانب دھکیل
سکے۔ اگر بارود کی مقدار یا خاصیت زیادہ ہو تو یہ نہ صرف گولی بلکہ پستول یا طمنچے
کی نالی کو تباہ کر سکتا ہے۔ اسی وجہ سے بارود چٹانوں اور پتھروں کو توڑنے کے لیے کم
اہمیت والا مادہ ہے جبکہ اسی کے مقابلے میں ٹی این ٹی یا بھاری آتش گیر مادہ اس مقصد
کے لیے زیادہ موزوں سمجھا جاتا ہے۔
/////////////
به پنجابی گن پاودر:
گن پاؤڈر سلفر تارکول تے پوٹاشیم نائیٹریٹ
دا مکسچر ہوندا اے۔
///////////
به سندی بارود:
بارُود يا باروت پوٽاشيئم نائٽريٽ (75 سيڪڙو)،
تيزاب (10 سيڪڙو) ۽ ڪاربان (15 سيڪڙو) ملائڻ سان ٺڪاءُ ڪندڙ مصالحو ٺهندو آهي. اوائل
۾ بارود جي دونهين ۽ رڪ جي چني ڪري هٿيارن کي هر ڀيري صاف ڪرڻو پوندو هو، پر پوء جيئن
جيئن ترقي ٿيندي وئي، تيئن تيئن بارود سان رک ۽ دونهين جا اثر ختم ٿيندا ويا.
بارود جي ايجاد کي راجر بيڪن يا برٿولڊ
شوارٽز (Berthold Schwarz)
ڏانهن منسوب ڪيو ويندو هو، پر نئين تحقيق مطابق بارود جي ايجاد 9 صديءَ ڌاري چين ۾
ٿي. يورپ ۾ هن جو رواج 14 صديءَ ۾ پيو، جنهن کان پوء جنگ جي طريقن ۾ انقلاب اچي ويو.
19 صديءَ ۾ اهڙا بارود ايجاد ٿيا، جيڪي دونهين کان پاڪ هئا. 1864ع ۾ پروشيا (جرمنيءَ)
جي توپ خاني واري ڪپتان ايڊورڊ شلٽرز هڪ اهڙو بارود ٺاهيو، جيڪو 1870ع کان پوء شلٽز
پائوڊر جي نالي سان مشهور ٿيو. گهڻو ڪري شوري ۽ نباتي ريشن جي جزن مان ٺهيل دونهين
کان پاڪ بارود جو غالباً پهريون ڪامياب مثال هو. هي بارود بندوقن، شيلڪي ڪارتوسن ۾،
دستي بمن ۽ توپ جي گولن ڇڏڻ لاء استعمال ٿيندو هو. پال ويئيل (Paul Vieille) 1885ع ۾ رائيفلن لاء شوري ۾ تَر ٿيل ڪپهه، ايٿر
۽ الڪوهل جي ميلاپ سان بارود تيار ڪيو، جيڪو بارود ”ب“ (Powder-B)
جي نالي سان سڏجڻ لڳو. ائلفرڊ نوبل (Alfred Noble)
بعد ۾ ان ۾ بيلٽسائٽ جو اضافو ڪيو ۽ شوري ۾ تر ڪپهه کي شوري ۽ گليسرين جي ڪريم ۾ ماري
نئون بارود ٺاهيو. ڪارڊائٽ (Cordite)
دونهين کان پاڪ هڪ ٻيو بارود آهي، جيڪو سر ايف. اي ايبل ۽ سر جيمز ڊيوار 1889ع ۾ ايجاد
ڪيو. ان ۾ شوري جي وڏي مقدار ۾ تر ٿيل گن ڪاٽن ۽ نائٽرو گليسرين هوندي آهي، جن کي ائسيٽون
(Acetone) جي مدد سان گڏايو ويندو
آهي. ان کان سواء انڊيورائٽ (Indurate)
بارود، سي. اي منرو (Monroe) 1891ع ۾ ايجاد ڪيو. ان کان پوء اڄ تائين بارود وڏي ترقي ڪئي آهي ۽ سڄيءَ دنيا
لاء خوف جي علامت بنيل آهي.
//////////////
به اردو بارود:
بارود، آتش گیر مادے کی ایک قسم ہے جو کہ
گندھک، کوئلہ اور پوٹاشیم نائٹریٹ سے مل کر بنتا ہے۔ بارود پوٹاشیم نائٹریٹ اور کوئلہ
ملانے سے بھی بن سکتا ہے مگر سلفر کے بغیر اس کی قوت اور توانائی کا اخراج نسبتاً کم
ہوتا ہے۔ بارود جلدی جلنے والا مادہ ہوتا ہے اور اس کے جلنے سے گرم گیس کا اخراج ہوتا
ہے جو کہ کاربن ڈائی آکسائیڈ، پانی اور نائٹروجن پر مشتمل ہوتی ہے۔ اس کے علاوہ باقی
بچ جانے والا مادہ پوٹاشیم سلفائیڈ ہوتا ہے۔[1] بارود کے جلد جلنے اور وسیع مقدار میں
حرارت اور گیس کی پیداوار کی وجہ سے اسے ہتھیاروں اور دوسرے آتش گیر مادوں میں استعمال
کیا جاتا ہے۔ بارود کے وسیع معنی میں کوئی بھی آتش گیر مادہ لیا جا سکتا ہے۔ جدید ہتھیاروں
میں روایتی بارود کا استعمال موقوف کیا جا چکا ہے جو کہ اس مقالے میں بیان کیا گیا
ہے۔ اس روایتی بارود کی بجائے ان ہتھیاروں میں دھویں کے بغیر بارودی مواد استعمال میں
لایا جا رہا ہے۔ قدیم ہتھیاروں یا کئی ممالک میں اب بھی دستیاب روایتی ہتھیاروں میں
یہ بارود اب بھی استعمال کیا جاتا ہے۔
بارود کو درجہ بندی کے لحاظ سے آتش گیر
مادہ مانا جاتا ہے، کیونکہ یہ بہت ہی آہستہ ختم ہوتا ہے اور اس کے جلنے کے نتیجے میں
نسبتاً کم چمک اور دھماکہ ہوتا ہے۔ گولی کے پچھلے حصے میں استعمال ہونے والا بارود
جلنے کے نتیجے میں اتنا دباؤ پیدا کرتا ہے جو گولی کو تیز رفتار سے آگے کی جانب دھکیل
سکے۔ اگر بارود کی مقدار یا خاصیت زیادہ ہو تو یہ نہ صرف گولی بلکہ پستول یا طمنچے
کی نالی کو تباہ کر سکتا ہے۔ اسی وجہ سے بارود چٹانوں اور پتھروں کو توڑنے کے لیے کم
اہمیت والا مادہ ہے جبکہ اسی کے مقابلے میں ٹی این ٹی یا بھاری آتش گیر مادہ اس مقصد
کے لیے زیادہ موزوں سمجھا جاتا ہے۔
////////////
ب کردی سورانی بارووت:
بارووت ماددەیەکی تەقەمەنییە کە بە ئاسانی
دەسووتێت و لە چەکەکاندا بە کار دەبرێت.
//////////
به آذری باریت:
Barıt — çoxkomponentli partlayıcı maddə olub, xaricdən
oksigen daxil olmadan daxildən yanma və bununla böyük daxili enerjili qaz
yaratmaq qabiliyyətinə malikdir. Barıt mərmilərin atılmasında, raketlərin hərəkət
etdirilməsində və başqa məqsədlər üçün istifadə edilir.
/////////
به ترکی باروت:
Barut, enerjiyi biriktirmek, taşımak ve harekete geçirmek
için kullanılan ilk teknolojilerden biridir.
////////
Gunpowder
From Wikipedia, the free encyclopedia
In American English, the term gunpowder also
refers broadly to any gun propellant.[1] Gunpowder (black
powder) is not normally used in modern firearms, which instead use smokeless powders.
Black powder for muzzleloadingrifles and pistols in
FFFG granulation size. U.S. Quarter (diameter 24 mm)
for comparison.
Gunpowder, also known as black
powder, is the earliest known chemicalexplosive. It is a mixture
of sulfur, charcoal, and potassium nitrate (saltpeter). The sulfur and
charcoal act as fuels, and the saltpeter is
an oxidizer.[2][3] Because of its
burning properties and the amount of heat and gas volume that it generates,
gunpowder has been widely used as a propellant in firearms and as a pyrotechnic composition in fireworks. Formulations used in
blasting rock (such as in quarrying) are called blasting
powder. Gunpowder is mainly used in older guns now because the
propellants used today are too powerful and could break the already fragile
barrels.
Gunpowder
was invented in the 9th century in China,[4][5] and the earliest
record of a written formula for gunpowder appears in the 11th century Song dynasty text,Wujing Zongyao.[6] This discovery led
to the invention of fireworks and the earliest gunpowder weapons in China. In
the centuries following the Chinese discovery, gunpowder weapons began
appearing in the Muslim world, Europe, and India. The
technology spread from China through the Middle East or Central Asia,
and then into Europe.[7] The earliest
Western accounts of gunpowder appear in texts written by English
philosopher Roger
Bacon in
the 13th century.[8]
Gunpowder
is assigned the UN
number UN0027
and has a hazard class of 1.1D. It has a flash point of approximately
427–464 °C (801–867 °F). The specific flash point may vary based on
the specific composition of the gunpowder. Gunpowder's specific gravity is 1.70–1.82
(mercury method) or 1.92–2.08 (pycnometer), and it has a pH of 6.0–8.0.[9]
Gunpowder
is classified as a low explosive because of its relatively slow
decomposition rate and consequently lowbrisance. Low explosives deflagrate (i.e., burn)
at subsonic speeds, whereas high explosives detonate, producing a supersonic
wave. Gunpowder is, however, capable of detonation if it is provided
by an external source (similarly to flash powder), such as a detonator, although the detonation
velocity is much slower than that of high explosives. Gunpowder's burning rate
increases with pressure, so it will burst containers but just burns in the
open. Ignition of the powder packed behind a bullet must generate enough
pressure to force it from the muzzle at high speed, but not enough to rupture
thegun barrel. Gunpowder thus makes a
good propellant, but is less suitable for shattering rock or fortifications.
Gunpowder was widely used to fill artillery shells and in mining and civil engineering to blast rock until
the second half of the 19th century, when the first high explosives were put into use.
Gunpowder is no longer used in modern explosive military warheads, nor is it
used as main explosive in mining operations due to its cost relative to that of
newer alternatives such as ammonium nitrate/fuel oil (ANFO).[10] Black powder is
still used as a delay element in various munitions where its slow-burning
properties are valuable.
Contents
Early Chinese rocket
A Mongol bomb thrown against a chargingJapanese samurai during the Mongol invasions of Japan after founding
the Yuan
Dynasty,
1281.
The
mainstream scholarly consensus is that gunpowder was invented in China, spread
through the Middle East, and then into Europe,[7] although there is a
dispute over how much the Chinese advancements in gunpowder warfare influenced
later advancements in the Middle East and Europe.[11][12] The spread of
gunpowder across Asia from China is widely attributed to the Mongols. One of
the first examples of Europeans encountering gunpowder and firearms is at
the Battle
of Mohi in
1241. At this battle the Mongols not only used gunpowder in early Chinese
firearms but in the earliest grenades as well.
A
major problem confronting the study of the early history of gunpowder is ready
access to sources close to the events described. Often enough, the first
records potentially describing use of gunpowder in warfare were written several
centuries after the fact, and may well have been colored by the contemporary
experiences of the chronicler.[13] It is also
difficult to accurately translate original alchemy texts, especially medieval
Chinese texts that try to explain phenomena through metaphor, into modern
scientific language with rigidly defined terminology. The translation
difficulty has led to errors or loose interpretations bordering on artistic licence.[14][15] Early writings
potentially mentioning gunpowder are sometimes marked by a linguistic process
where old
words acquired new meanings.[16] For instance, the
Arabic word naft transitioned from denoting naphtha to denoting
gunpowder, and the Chinese word pào evolved from meaning
catapult to referring to cannon.[17] According to
science and technology historianBert S. Hall: "It goes without
saying, however, that historians bent on special pleading, or simply with axes
of their own to grind, can find rich material in these terminological
thickets."[18]
Yuan Dynasty hand cannon dated
to 1288.
Saltpeter was known to the
Chinese by the mid-1st century AD and there is strong evidence of the use of
saltpeter and sulfur in various largelymedicinal combinations.[19] A Chinese
alchemical text dated 492 noted saltpeter burnt with a purple flame, providing
a practical and reliable means of distinguishing it from other inorganic salts,
thus enabling alchemists to evaluate and compare purification techniques; the
earliest Latin accounts of saltpeter purification are dated after 1200.[20]
Yuan Dynasty bronze hand cannon
from 1332 at th (c. 808); it describes mixing six parts sulfur to six parts
saltpeter to one part birthwort herb (which would
provide carbon).[21]
The
first reference to the incendiary properties of such mixtures is the passage of
the Zhenyuan miaodao yaolüe, a Taoist text tentatively
dated to the mid-9th century:[20] "Some have
heated together sulfur, realgar and saltpeter
with honey; smoke and flames
result, so that their hands and faces have been burnt, and even the whole house
where they were working burned down."[22] The Chinese word
for "gunpowder" is Chinese: 火药/火藥; pinyin: huŏ yào /xuou
yɑʊ/, which literally means "Fire Medicine";[23] however this name
only came into use some centuries after the mixture's discovery.[24] During the 9th
century, Taoist monks oralchemists searching for
an elixir
of immortality had serendipitously stumbled upon gunpowder.[7][25] The Chinese wasted
little time in applying gunpowder to the development of weapons, and in the
centuries that followed, they produced a variety of gunpowder weapons,
including flamethrowers, rockets, bombs, and land mines, before inventing guns
as a projectile weapon.[26] Archaeological
evidence of a hand cannon has been excavated in Manchuria dated from the late
13th century[27] and the shells of
explosive bombs have been discovered in a shipwreck off the shore of Japan
dated from 1281, during the Mongol invasions of Japan.[28]
The
Chinese "Wu
Ching Tsung Yao" (Complete Essentials from the Military Classics),
written by Tseng Kung-Liang between 1040–1044, provides encyclopedia references
to a variety of mixtures that included petrochemicals—as well as garlic and
honey. A slow match for flame throwing mechanisms using the siphon principle
and for fireworks and rockets is mentioned. The mixture formulas in this book
do not contain enough saltpeter to create an explosive however; being limited
to at most 50% saltpeter, they produce an incendiary.[29] The Essentials was
however written by a Song dynastycourt bureaucrat, and
there is little evidence that it had any immediate impact on warfare; there is
no mention of gunpowder use in the chronicles of the wars against the Tanguts in the 11th
century, and China was otherwise mostly at peace during this century. The first
chronicled use of "fire spears" (or "fire lances") is at
the siege
of De'an in
1132.[30]
·
Formula for gunpowder in
1044 Wujing zongyaopart I vol 12
·
Instruction for fire bomb
in Wujing zongyao
·
Fire bomb
·
Fire grenade
Land mine from the Ming Dynasty text Huolongjing
Fire arrow rocket launcher from the Wujing
zongyao
The Sultani Cannon, a very heavy bronze breech-loading cannon of type used
by Ottoman
Empire in
theconquest of Constantinople, in 1453.
The Muslims acquired knowledge
of gunpowder some time between 1240 and 1280, by which time the Syrian Hasan al-Rammah had written, in
Arabic, recipes for gunpowder, instructions for the purification of saltpeter,
and descriptions of gunpowder incendiaries. Gunpowder arrived in the Middle
East, possibly through India, from China. This is implied by al-Rammah's usage
of "terms that suggested he derived his knowledge from Chinese
sources" and his references to saltpeter as "Chinese snow" (Arabic: ثلج الصين thalj
al-ṣīn), fireworks as "Chinese flowers" and rockets as
"Chinese arrows".[31] However, because
al-Rammah attributes his material to "his father and
forefathers", al-Hassan argues that gunpowder became
prevalent in Syria and Egypt by "the end of the twelfth century or the
beginning of the thirteenth".[32] Persians called saltpeter
"Chinese salt" (Persian: نمک
چینی) namak-i
chīnī)[33][34][35][36][37] or "salt from
Chinese salt marshes" (نمک شوره چینی namak-i shūra-yi chīnī).[38][39]
Al-Hassan
claims that in the Battle of Ain Jalut of 1260, the Mamluks used against the
Mongols in "the first cannon in history" gunpowder formula with
near-identical ideal composition ratios for explosive gunpowder.[32] Other historians
urge caution regarding claims of Islamic firearms use in the 1204-1324 period
as late medieval Arabic texts used the same word for gunpowder, naft,
that they used for an earlier incendiary, naphtha.[13][17] Khan claims that it
was invading Mongols who introduced gunpowder to the Islamic world[40] and cites Mamluk antagonism towards
early musketeers in their infantry as an example of how gunpowder weapons were
not always met with open acceptance in the Middle East.[41] Similarly, the
refusal of theirQizilbash forces to use
firearms contributed to the Safavid rout at Chaldiran in 1514.[41]
1840 drawing of a gunpowder magazine near Tehran, Persia. Gunpowder was
extensively used in the Naderian Wars.
The
earliest surviving documentary evidence for the use of the hand cannon, considered the oldest
type of portable
firearm and
a forerunner of the handgun, are from several Arabic
manuscripts dated to the 14th century.[42] Al-Hassan argues that
these are based on earlier originals and that they report hand-held cannons
being used by the Mamluks at the Battle of Ain Jalut in 1260.[32]
Hasan
al-Rammah included 107 gunpowder recipes in his text al-Furusiyyah wa
al-Manasib al-Harbiyya (The Book of Military Horsemanship and
Ingenious War Devices), 22 of which are for rockets. If one takes the
median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulfur,
and 15.94% charcoal), it is nearly identical to the modern reported ideal
gunpowder recipe of 75% potassium nitrate, 10% sulfur, and 15% charcoal.[32]
The
state-controlled manufacture of gunpowder by the Ottoman Empire through
early supply
chains to
obtain nitre, sulfur and high-quality charcoal from oaks in Anatolia contributed
significantly to its expansion between the 15th and 18th century. It was not
until later in the 19th century when the syndicalist production of Turkish
gunpowder was greatly reduced, which coincided with the decline of its military
might.[43]
Several
sources mention Chinese firearms and gunpowder weapons being deployed by the
Mongols against European forces at the Battle of Mohi in 1241.[44][45][46] Professor Kenneth
Warren Chase credits the Mongols for introducing into Europe gunpowder and its
associated weaponry.[47]
C.
F. Temler interprets Peter, Bishop of Leon, as reporting the use of cannons
in Seville in 1248.[48]
In
Europe, one of the first mentions of gunpowder use appears in a passage
found in Roger Bacon's Opus Maius andOpus Tertium in
what has been interpreted as being firecrackers. The most telling
passage reads: "We have an example of these things (that act on the
senses) in [the sound and fire of] that children's toy which is made in many
[diverse] parts of the world; i.e., a device no bigger than one's thumb. From
the violence of that salt called saltpeter [together with sulfur and willow
charcoal, combined into a powder] so horrible a sound is made by the bursting
of a thing so small, no more than a bit of parchment [containing it], that we
find [the ear assaulted by a noise] exceeding the roar of strong thunder, and a
flash brighter than the most brilliant lightning."[8] In the early 20th
century, British artillery officer Henry William Lovett Hime proposed
that another
work tentatively attributed to Bacon, Epistola de Secretis Operibus
Artis et Naturae, et de Nullitate Magiae contained an encrypted
formula for gunpowder. This claim has been disputed by historians of science
including Lynn
Thorndike, John Maxson Stillman and George Sarton and by Bacon's
editor Robert Steele, both in terms of
authenticity of the work, and with respect to the decryption method.[8] In any case, the
formula claimed to have been decrypted (7:5:5 saltpeter:charcoal:sulfur) is not
useful for firearms use or even firecrackers, burning slowly and producing
mostly smoke.[49][50]
The Liber Ignium, or Book of
Fires, attributed to Marcus Graecus, is a collection of incendiary recipes,
including some gunpowder recipes. Partington dates the gunpowder recipes to
approximately 1300.[51] One recipe for
"flying fire" (ingis volatilis) involves saltpeter, sulfur,
and colophonium, which, when inserted
into a reed or hollow wood, "flies away suddenly and burns up everything."
Another recipe, for artificial "thunder", specifies a mixture of one
pound native sulfur, two pounds linden or willow charcoal, and six pounds of
saltpeter.[52] Another specifies a
1:3:9 ratio.[52]
Some
of the gunpowder recipes of De Mirabilibus Mundi of Albertus Magnus are identical to
the recipes of the Liber Ignium, and according to Partington,
"may have been taken from that work, rather than conversely."[53] Partington suggests
that some of the book may have been compiled by Albert's students, "but
since it is found in thirteenth century manuscripts, it may well be by
Albert."[53] Albertus Magnus
died in 1280.
A
common German folk-tale is of the German
priest/monk named Berthold Schwarz who independently
invented gunpowder, thus earning it the German name Schwarzpulver or
in English Schwarz's powder.
Büchsenmeysterei : von Geschoß,
Büchsen, Pulver, Salpeter und Feurwergken, 1531
De la pirotechnia, 1540
A
major advance in manufacturing began in Europe in the late 14th century when
the safety and thoroughness of incorporation was improved by wet grinding;
liquid, such as distilled spirits or perhaps the urine of wine-drinking bishops[54]was added during the
grinding-together of the ingredients and the moist paste dried afterwards. (The
principle of wet mixing to prevent the separation of dry ingredients, invented
for gunpowder, is used today in the pharmaceutical industry.[55]) It was also discovered
that if the paste was rolled into balls before drying the resulting gunpowder
absorbed less water from the air during storage and traveled better. The balls
were then crushed in a mortar by the gunner immediately before use, with the
old problem of uneven particle size and packing causing unpredictable results.
If
the right size particles were chosen, however, the result was a great
improvement in power. Forming the damp paste into corn-sized clumps
by hand or with the use of a sieve instead of larger balls produced a product
after drying that loaded much better, as each tiny piece provided its own
surrounding air space that allowed much more rapid combustion than a fine
powder. This "corned" gunpowder was from 30% to 300% more powerful.
An example is cited where 34 pounds of serpentine was needed to shoot a
47-pound ball, but only 18 pounds of corned powder.[54] The optimum size of
the grain depended on its use; larger for large cannon, finer for small arms.
Larger cast cannons were easily muzzle-loaded with corned powder using a
long-handled ladle. Corned powder also retained the advantage of low moisture
absorption, as even tiny grains still had much less surface area to attract
water than a floury powder.
During
this time, European manufacturers also began regularly purifying saltpeter,
using wood ashes containing potassium carbonate to precipitate
calcium from their dung liquor, and using ox blood, alum, and slices of turnip to clarify the
solution.[54]
Gunpowder-making
and metal-smelting and casting for shot and cannon fee was closely held by
skilled military tradesmen, who formed guilds that collected dues, tested
apprentices, and gave pensions. "Fire workers" were also required to
craft fireworks for celebrations of victory or peace.
During
the Renaissance, two European schools of pyrotechnic thought emerged,
one in Italy and the other at Nuremberg, Germany. The German printer and
publisher Christiaan Egenolff adapted an earlier work on pyrotechnics from
manuscript to print form, publishing his Büchsenmeysterei in
1529 and reprinting it in 1531. Now extremely rare, the book discusses the
manufacturing of gunpowder, the operation of artillery and the rules of conduct
for the gunsmith.[56]
In
Italy, Vannoccio Biringuccio, born in 1480, was a
member of the guild Fraternita di Santa Barbara but broke with
the tradition of secrecy by setting down everything he knew in a book
titled De la pirotechnia, written in vernacular.
It was published posthumously in 1540, with 9 editions over 138 years, and also
reprinted by MIT
Press in
1966.[54]
Deutliche Anweisung zur Feuerwerkerey, 1748
By
the mid-17th century fireworks were used for entertainment on an unprecedented
scale in Europe, being popular even at resorts and public gardens.[57] With the
publication of Deutliche Anweisung zur Feuerwerkerey(1748), methods
for creating fireworks were sufficiently well-known and well-described that
"Firework making has become an exact science."[58] In 1774 Louis XVI ascended to the
throne of France at age 20. After he discovered that France was not
self-sufficient in gunpowder, a Gunpowder Administration was established; to
head it, the lawyer Antoine Lavoisier was appointed.
Although from a bourgeois family, after his degree in law Lavoisier became
wealthy from a company set up to collect taxes for the Crown; this allowed him
to pursue experimental natural science as a hobby.[59]
Without
access to cheap Indian saltpeter (controlled by the British), for hundreds of
years France had relied on saltpetermen with royal warrants, the droit
de fouilleor "right to dig", to seize nitrous-containing soil and
demolish walls of barnyards, without compensation to the owners.[60] This caused
farmers, the wealthy, or entire villages to bribe the petermen and the
associated bureaucracy to leave their buildings alone and the saltpeter
uncollected. Lavoisier instituted a crash program to increase saltpeter
production, revised (and later eliminated) the droit de fouille,
researched best refining and powder manufacturing methods, instituted
management and record-keeping, and established pricing that encouraged private
investment in works. Although saltpeter from new Prussian-style putrefaction
works had not been produced yet (the process taking about 18 months), in only a
year France had gunpowder to export. A chief beneficiary of this surplus was
the American Revolution. By careful testing and
adjusting the proportions and grinding time, powder from mills such as at Essonne outside Paris
became the best in the world by 1788, and inexpensive.[60][61]
The old Powder or Pouther magazine dating
from 1642, built by order of Charles I. Irvine, North Ayrshire, Scotland
Gunpowder
production in Britain appears to have started in the mid 14th century with the
aim of supplying the English Crown.[62] Records show that,
in England, gunpowder was being made in 1346 at the Tower of London; a powder house existed
at the Tower in 1461; and in 1515 three King's gunpowder makers worked there.[62] Gunpowder was also
being made or stored at other Royal castles, such as Portchester. By the early 14th century, according to
N.J.G. Pounds's study The Medieval Castle in England and Wales, many English castles had been
deserted and others were crumbling. Their military significance faded except on
the borders. Gunpowder had made smaller castles useless.[63]
Henry VIII of England was short of
gunpowder when he invaded France in 1544 and England needed to import gunpowder
via the port of Antwerp in what is now Belgium.[62]
The English Civil War (1642–1645) led to
an expansion of the gunpowder industry, with the repeal of the Royal Patent in
August 1641.[62]
Two
British physicists, Andrew Noble and Frederick Abel, worked to improve the
properties of black powder during the late 19th century. This formed the basis
for the Noble-Abel gas equation for internal ballistics.[64]
The
introduction of smokeless powder in the late 19th century led to a contraction
of the gunpowder industry. After the end of World War I, the majority of the
United Kingdom gunpowder manufacturers merged into a single company,
"Explosives Trades limited"; and number of sites were closed down,
including those in Ireland. This company became Nobel Industries Limited; and
in 1926 became a founding member of Imperial Chemical Industries. The Home Office removed gunpowder
from its list of Permitted Explosives; and shortly afterwards, on
31 December 1931, the former Curtis & Harvey'sGlynneath gunpowder factory
at Pontneddfechan, in Wales, closed down, and it was
demolished by fire in 1932.[65]
The
last remaining gunpowder mill at the Royal Gunpowder Factory, Waltham Abbey was damaged by a
German parachute
mine in
1941 and it never reopened.[66] This was followed
by the closure of the gunpowder section at the Royal Ordnance Factory, ROF Chorley, the section was closed
and demolished at the end of World War II; and ICI Nobel's Roslin gunpowder factory, which closed in
1954.[66][67]
This
left the sole United Kingdom gunpowder factory at ICI Nobel's Ardeer site inScotland; it too closed in
October 1976.[66] Since then
gunpowder has been imported into the United Kingdom. In the late 1970s/early
1980s gunpowder was bought from eastern Europe, particularly from what was then
the German
Democratic Republic and formerYugoslavia.
In the year 1780 the British began to annex the
territories of the Sultanate of Mysore, during the Second Anglo-Mysore War. The British battalion
was defeated during the Battle of Guntur, by the forces of Hyder Ali, who effectively
utilized Mysorean
rocketsand rocket artillery against the closely
massed British forces.
Gunpowder
and gunpowder weapons were transmitted to India through the Mongol invasions of India.[68][69] The Mongols were
defeated by Alauddin
Khilji of
the Delhi
Sultanate,
and some of the Mongol soldiers remained in northern India after their
conversion to Islam.[69] It was written in
theTarikh-i Firishta (1606–1607) that Nasir ud din Mahmud the ruler of the
Delhi Sultanate presented the envoy of the Mongol rulerHulegu Khan with a dazzling
pyrotechnics display upon his arrival in Delhi in 1258. Nasir ud din
Mahmud tried to express his strength as a ruler and tried to ward off anyMongol attempt similar to
the Siege of Baghdad (1258).[70] Firearms known
as top-o-tufak also existed in many Muslim kingdoms in India
by as early as 1366.[70] From then on the
employment ofgunpowder warfare in India was
prevalent, with events such as the "Siege ofBelgaum" in 1473 by Sultan Muhammad Shah
Bahmani.[71]
The
shipwrecked Ottoman Admiral Seydi Ali Reis is known to have
introduced the earliest type of matchlock weapons, which the
Ottomans used against the Portuguese during the Siege of Diu (1531). After that, a diverse
variety of firearms, large guns in particular, became visible in Tanjore, Dacca, Bijapur, and Murshidabad.[72] Guns made of bronze
were recovered from Calicut (1504)- the former capital of
the Zamorins[73]
The
Mughal emperor Akbar mass-produced
matchlocks for the Mughal Army. Akbar is personally
known to have shot a leading Rajput commander during
the Siege of Chittorgarh.[74] The Mughals began to use bamboo rockets (mainly for
signalling) and employ sappers: special units that
undermined heavy stone fortifications to plant gunpowder charges.
The
Mughal Emperor Shah
Jahan is
known to have introduced much more advanced matchlocks, their designs were a
combination of Ottoman and Mughal designs. Shah Jahan also countered the British and other Europeans in his province
of Gujarāt, which supplied Europe
saltpeter for use in gunpowder warfare during the 17th century.[75] Bengal and Mālwaparticipated in saltpeter
production.[75] The Dutch, French,
Portuguese, and English used Chhapra as a center of
saltpeter refining.[75]
Ever
since the founding of the Sultanate of Mysore by Hyder Ali, French military officers
were employed to train the Mysore Army. Hyder Ali and his son Tipu Sultan were
the first to introduce modern cannons and muskets, their army was also the
first in India to have official uniforms. During the Second Anglo-Mysore War Hyder Ali and his
son Tipu
Sultanunleashed
the Mysorean rockets at their British opponents effectively defeating them on
various occasions. The Mysorean rockets inspired the development of the Congreve rocket, which the British widely
utilized during the Napoleonic Wars and the War of 1812.[76]
The Javanese Majapahit Empire was arguably
able to encompass much of modern-day Indonesia due to its unique
mastery of bronze smithing and use of a central arsenal fed by a large
number of cottage industries within the immediate region. Documentary and
archeological evidence indicate that Arab or Indian traders
introduced gunpowder, gonnes,muskets, blunderbusses, and cannons to the
Javanese, Acehnese, and Batak via long established
commercial trade
routes around
the early to mid 14th century.[77] Portuguese and
Spanish invaders were unpleasantly surprised and even outgunned on occasion.[78] The resurgent Singhasari Empire
overtook Sriwijaya and later emerged
as the Majapahit whose warfare featured the use of fire-arms and cannonade.[79] Circa 1540, the
Javanese, always alert for new weapons found the newly arrived Portuguese
weaponry superior to that of the locally made variants. Javanese bronze
breech-loaded swivel-guns, known as meriam, or erroneously as lantaka, was used widely by the
Majapahit navy as well as by pirates and rival lords. The demise of the
Majapahit empire and the dispersal of disaffected skilled bronze cannon-smiths
to Brunei, modern Sumatra, Malaysia and the Philippines lead to widespread
use, especially in the Makassar Strait.
Saltpeter
harvesting was recorded by Dutch and German travelers as being common in even
the smallest villages and was collected from the decomposition process of large
dung hills specifically piled for the purpose. The Dutch punishment for
possession of non-permitted gunpowder appears to have been amputation.[80] Ownership and
manufacture of gunpowder was later prohibited by the colonial Dutch occupiers.[77] According to a
colonel McKenzie quoted in SirThomas Stamford Raffles, The History of Java (1817), the purest
sulfur was supplied from a crater from a mountain near the straits
of Bali.[79]
For
the most powerful black powder, meal powder, a wood charcoal is used.
The best wood for the purpose is Pacific willow,[81] but others such
as alderor buckthorn can be used. In
Great Britain between the 15th and 19th centuries charcoal from alder buckthorn was greatly prized
for gunpowder manufacture; cottonwood was used by the
American Confederate States.[82]The ingredients are
reduced in particle size and mixed as intimately as possible. Originally this
was with a mortar-and-pestle or a similarly operating stamping-mill, using
copper, bronze or other non-sparking materials, until supplanted by the rotating ball mill principle with
non-sparking bronze orlead. Historically, a marble
or limestone edge runner mill,
running on a limestone bed, was used in Great Britain; however, by the mid 19th
century this had changed to either an iron-shod stone wheel or a cast iron wheel running on an
iron bed.[83] The mix was
dampened with alcohol or water during
grinding to prevent accidental ignition. This also helps the extremely soluble
saltpeter to mix into the microscopic nooks and crannies of the very high
surface-area charcoal.
Around
the late 14th century, European powdermakers first began adding liquid during
grinding to improve mixing, reduce dust, and with it the risk of explosion.[84] The powder-makers
would then shape the resulting paste of dampened gunpowder, known as mill cake,
into corns, or grains, to dry. Not only did corned powder keep better because
of its reduced surface area, gunners also found that it was more powerful and
easier to load into guns. Before long, powder-makers standardized the process
by forcing mill cake through sieves instead of corning powder by hand.
The
improvement was based on reducing the surface area of a higher density
composition. At the beginning of the 19th century, makers increased density
further by static pressing. They shoveled damp mill cake into a two-foot square
box, placed this beneath a screw press and reduced it to 1/2 its volume.
"Presscake" had the hardness of slate. They broke the dried slabs
with hammers or rollers, and sorted the granules with sieves into different
grades. In the United States,Eleuthere Irenee
du Pont, who had learned the trade from Lavoisier, tumbled the dried
grains in rotating barrels to round the edges and increase durability during
shipping and handling. (Sharp grains rounded off in transport, producing fine
"meal dust" that changed the burning properties.)
Another
advance was the manufacture of kiln charcoal by distilling wood in heated iron
retorts instead of burning it in earthen pits. Controlling the temperature
influenced the power and consistency of the finished gunpowder. In 1863, in
response to high prices for Indian saltpeter, DuPont chemists developed
a process using potash or mined potassium chloride to convert
plentiful Chilean sodium nitrate to
potassium nitrate.[85]
The
following year (1864) the Gatebeck Low Gunpowder Works in Cumbria (Great
Britain) started a plant to manufacture potassium nitrate by essentially the
same chemical process.[86] This is nowadays
called the ‘Wakefield Process’, after the owners of the company. It would have
used potassium chloride from the Staßfurt mines, near Magdeburg, Germany, which
had recently become available in industrial quantities.[87]
During
the 18th century, gunpowder factories became increasingly dependent on
mechanical energy.[88] Despite
mechanization, production difficulties related to humidity control, especially
during the pressing, were still present in the late 19th century. A paper from
1885 laments that "Gunpowder is such a nervous and sensitive spirit, that
in almost every process of manufacture it changes under our hands as the
weather changes." Pressing times to the desired density could vary by a
factor of three depending on the atmospheric humidity.[89]
The
term black powder was coined in the late 19th century,
primarily in the United States, to distinguish prior
gunpowder formulations from the new smokeless powders and semi-smokeless
powders, in cases where these are not referred to ascordite. Semi-smokeless powders
featured bulk volume properties that approximated black powder, but had
significantly reduced amounts of smoke and combustion products. Smokeless
powder has different burning properties (pressure vs. time) and can generate
higher pressures and work per gram. This can rupture older weapons designed for
black powder. Smokeless powders ranged in color from brownish tan to yellow to
white. Most of the bulk semi-smokeless powders ceased to be manufactured in the
1920s.[90][91][92]
Black
powder is a granular mixture of
·
charcoal, which provides
carbon and other fuel for the reaction, simplified as carbon (C);
·
sulfur (S), which, while
also serving as a fuel, lowers the temperature required to ignite the mixture,
thereby increasing the rate of combustion.
Potassium
nitrate is the most important ingredient in terms of both bulk and function
because the combustion process releases oxygen from the potassium nitrate,
promoting the rapid burning of the other ingredients.[93] To reduce the
likelihood of accidental ignition by static electricity, the granules of modern
black powder are typically coated with graphite, which prevents the
build-up of electrostatic charge.
Charcoal
does not consist of pure carbon; rather, it consists of partially pyrolyzed cellulose, in which the wood is
not completely decomposed. Carbon differs from
ordinary charcoal. Whereas charcoal's
autoignition temperature is relatively low, carbon's is much greater. Thus, a
black powder composition containing pure carbon would burn similarly to a match
head, at best.[94]
The
current standard composition for the black powders that are manufactured by
pyrotechnicians was adopted as long ago as 1780. Proportions by weight are 75%
potassium nitrate (known as saltpeter or saltpetre), 15% softwood charcoal, and
10% sulfur.[83] These ratios have
varied over the centuries and by country, and can be altered somewhat depending
on the purpose of the powder. For instance, power grades of black powder,
unsuitable for use in firearms but adequate for blasting rock in quarrying
operations, are called blasting powder rather than gunpowder with standard
proportions of 70% nitrate, 14% charcoal, and 16% sulfur; blasting powder may
be made with the cheaper sodium nitrate substituted for
potassium nitrate and proportions may be as low as 40% nitrate, 30% charcoal,
and 30% sulfur.[95] In 1857, Lammot du
Pont solved the main problem of using cheaper sodium nitrate formulations when
he patented DuPont "B" blasting powder. After manufacturing grains
from press-cake in the usual way, his process tumbled the powder with graphite
dust for 12 hours. This formed a graphite coating on each grain that reduced
its ability to absorb moisture.[96]
Neither
the use of graphite nor sodium nitrate was new. Glossing gunpowder corns with
graphite was already an accepted technique in 1839,[97] and sodium
nitrate-based blasting powder had been made in Peru for many years using the
sodium nitrate mined at Tarapacá (now in Chile).[98] Also, in 1846, two
plants were built in south-west England to make blasting powder using this
sodium nitrate.[99] The idea may well
have been brought from Peru by Cornish miners returning home after completing
their contracts. Another suggestion is that it was William Lobb, the
planthunter, who recognised the possibilities of sodium nitrate during his
travels in South America.[100] Lammot du Pont
would have known about the use of graphite and probably also knew about the
plants in south-west England. In his patent he was careful to state that his
claim was for the combination of graphite with sodium nitrate-based powder,
rather than for either of the two individual technologies.
French
war powder in 1879 used the ratio 75% saltpeter, 12.5% charcoal, 12.5% sulfur.
English war powder in 1879 used the ratio 75% saltpeter, 15% charcoal, 10%
sulfur.[101] The British Congreve
rockets used 62.4% saltpeter, 23.2% charcoal and 14.4% sulfur, but the British
Mark VII gunpowder was changed to 65% saltpeter, 20% charcoal and 15% sulfur.[102] The explanation for
the wide variety in formulation relates to usage. Powder used for rocketry can
use a slower burn rate since it accelerates the projectile for a much longer
time—whereas powders for weapons such as flintlocks, cap-locks, or matchlocks
need a higher burn rate to accelerate the projectile in a much shorter
distance. Cannons usually used lower burn rate powders, because most would
burst with higher burn rate powders.
The
original dry-compounded powder used in 15th-century Europe was known as
"Serpentine", either a reference to Satan[103] or to a common
artillery piece that used it.[104] The ingredients
were ground together with a mortar and pestle, perhaps for 24 hours,[104] resulting in a fine
flour. Vibration during transportation could cause the components to separate
again, requiring remixing in the field. Also if the quality of the saltpeter
was low (for instance if it was contaminated with highly hygroscopic calcium nitrate), or if the powder was
simply old (due to the mildly hygroscopic nature of potassium nitrate), in
humid weather it would need to be re-dried. The dust from "repairing"
powder in the field was a major hazard.
Loading
cannons or bombards before the powder-making advances of
the Renaissance was a skilled art. Fine powder loaded haphazardly or too
tightly would burn incompletely or too slowly. Typically, the breech-loading
powder chamber in the rear of the piece was filled only about half full, the
serpentine powder neither too compressed nor too loose, a wooden bung pounded
in to seal the chamber from the barrel when assembled, and the projectile
placed on. A carefully determined empty space was necessary for the charge to
burn effectively. When the cannon was fired through the touchhole, turbulence
from the initial surface combustion caused the rest of the powder to be rapidly
exposed to the flame.[104]
The
advent of much more powerful and easy to use corned powder
changed this procedure, but serpentine was used with older guns into the 17th
century.[105]
For
gunpowder to explode effectively, the combustible ingredients must be reduced
to the smallest possible particle sizes, and be as thoroughly mixed as
possible. Once mixed, however, for better results in a gun, makers discovered
that the final product should be in the form of individual dense grains that
spread the fire quickly from grain to grain, much as straw ortwigs catch fire more
quickly than a pile of sawdust.
Primarily
for safety reasons, size reduction and mixing is done while the ingredients are
damp, usually with water. After 1800, instead of forming grains by hand or with
sieves, the damp mill-cake was pressed in molds to increase
its density and extract the liquid, forming press-cake. The
pressing took varying amounts of time, depending on conditions such as
atmospheric humidity. The hard, dense product was broken again into tiny
pieces, which were separated with sieves to produce a uniform product for each
purpose: coarse powders for cannons, finer grained powders for muskets, and the
finest for small hand guns and priming.[105] Inappropriately
fine-grained powder often caused cannons to burst before the projectile could
move down the barrel, due to the high initial spike in pressure.[106] Mammoth powder
with large grains, made for Rodman's 15-inch cannon, reduced the pressure to
only 20 percent as high as ordinary cannon powder would have produced.[107]
In
the mid-19th century, measurements were made determining that the burning rate
within a grain of black powder (or a tightly packed mass) is about 0.20 fps,
while the rate of ignition propagation from grain to grain is around 30 fps,
over two orders of magnitude faster.[105]
Modern
corning first compresses the fine black powder meal into blocks with a fixed
density (1.7 g/cm³).[108] In the United
States, gunpowder grains were designated F (for fine) or C (for coarse). Grain
diameter decreased with a larger number of Fs and increased with a larger
number of Cs, ranging from about 2 mm for 7F to 15 mm for 7C. Even
larger grains were produced for artillery bore diameters greater than about
17 cm (6.7 in). The standard DuPont Mammoth powder
developed by Thomas Rodman and Lammot du Pont for use during
the American Civil War had grains
averaging 0.6 inches diameter, with edges rounded in a glazing barrel.[107] Other versions had
grains the size of golf and tennis balls for use in 20-inch (50-cm) Rodman guns.[109] In 1875 DuPont
introduced Hexagonal powder for large artillery, which was
pressed using shaped plates with a small center core—about 1.5 inches
diameter, like a wagon wheel nut, the center hole widened as the grain burned.[110] By 1882 German
makers also produced hexagonal grained powders of a similar size for artillery.[110]
By
the late 19th century manufacturing focused on standard grades of black powder
from Fg used in large bore rifles and shotguns, through FFg (medium and
small-bore arms such as muskets and fusils), FFFg (small-bore rifles and
pistols), and FFFFg (extreme small bore, short pistols and most commonly for
priming flintlocks).[111] A coarser grade for
use in military artillery blanks was designated A-1.
These grades were sorted on a system of screens with oversize retained on a
mesh of 6 wires per inch, A-1 retained on 10 wires per inch, Fg retained on 14,
FFg on 24, FFFg on 46, and FFFFg on 60. Fines designated FFFFFg were usually
reprocessed to minimize explosive dust hazards.[112] In the United Kingdom, the main service
gunpowders were classified RFG (rifle grained fine) with diameter of one or two
millimeters and RLG (rifle grained large) for grain diameters between two and
six millimeters.[109] Gunpowder grains
can alternatively be categorized by mesh size: the BSS sieve mesh size, being the smallest mesh
size, which retains no grains. Recognized grain sizes are Gunpowder G 7, G 20,
G 40, and G 90.
Owing
to the large market of antique and replica black-powder firearms in the
US, modern gunpowder substitutes likePyrodex, Triple Seven and Black
Mag3[113] pellets have been
developed since the 1970s. These products, which should not be confused with
smokeless powders, aim to produce less fouling (solid residue), while
maintaining the traditional volumetric measurement system for charges. Claims
of less corrosiveness of these products have been controversial however. New
cleaning products for black-powder guns have also been developed for this
market.[111]
Besides
black powder, there are other historically important types of gunpowder.
"Brown gunpowder" is cited as composed of 79% nitre, 3% sulfur, and
18% charcoal per 100 of dry powder, with about 2% moisture. Prismatic Brown Powder is a large-grained
product the Rottweil Company introduced
in 1884 in Germany, which was adopted by the British Royal Navy shortly
thereafter. The French navy adopted a fine, 3.1 millimeter, not prismatic
grained product called Slow Burning Cocoa (SBC) or "cocoa
powder". These brown powders reduced burning rate even further by using as
little as 2 percent sulfur and using charcoal made from rye straw that had not
been completely charred, hence the brown color.[110]
Lesmok
powder was a product developed by DuPont in 1911,[114] one of several
semi-smokeless products in the industry containing a mixture of black and
nitrocellulose powder. It was sold to Winchester and others
primarily for .22 and .32 small calibers. Its advantage was that it was
believed at the time to be less corrosive than smokeless powders then in use.
It was not understood in the U.S. until the 1920s that the actual source of
corrosion was the potassium chloride residue from potassium chlorate sensitized
primers. The bulkier black powder fouling better disperses primer residue.
Failure to mitigate primer corrosion by dispersion caused the false impression
that nitrocellulose-based powder caused corrosion.[115] Lesmok had some of
the bulk of black powder for dispersing primer residue, but somewhat less total
bulk than straight black powder, thus requiring less frequent bore cleaning.[116] It was last sold by
Winchester in 1947.
Burst barrel of a muzzle loader pistol
replica, which was loaded with nitrocellulose powder instead of black powder
and could not withstand the higher pressures of the modern propellant
The
development of smokeless powders, such as cordite, in the late 19th century
created the need for a spark-sensitive priming charge, such as gunpowder.
However, the sulfur content of traditional gunpowders caused corrosion problems with
Cordite Mk I and this led to the introduction of a range of sulfur-free
gunpowders, of varying grain sizes.[66] They typically
contain 70.5 parts of saltpeter and 29.5 parts of charcoal.[66] Like black powder,
they were produced in different grain sizes. In the United Kingdom, the finest
grain was known as sulfur-free mealed powder (SMP).
Coarser grains were numbered as sulfur-free gunpowder (SFG n): 'SFG 12', 'SFG
20', 'SFG 40' and 'SFG 90', for example; where the number represents the
smallest BSS sieve mesh size, which retained no grains.
Sulfur's
main role in gunpowder is to decrease the ignition temperature. A sample
reaction for sulfur-free gunpowder would be
6
KNO3 + C7H4O → 3 K2CO3 + 4 CO2 + 2 H2O + 3 N2
Although
charcoal's chemical formula varies, it can be summed up by its empirical
formula: C7H4O.[citation needed]Therefore, a more accurate
equation of the decomposition of regular black powder with sulfur is:
6 KNO3 + C7H4O + 2 S → K2CO3 + K2SO4 + K2S + 4 CO2 + 2 CO +
2 H2O + 3 N2
Black
powder without sulfur gives:
10 KNO3 + 2 C7H4O → 5 K2CO3 + 4 CO2 + 5 CO +
4 H2O + 5 N2
However,
gunpowder does not burn as a single reaction, so the byproducts are not easily
predicted. One study showed that it produced (in order of descending
quantities) 55.91% solid products: potassium carbonate, potassium sulfate,potassium sulfide, sulfur, potassium
nitrate, potassium thiocyanate, carbon, ammonium carbonate and 42.98% gaseous
products: carbon
dioxide, nitrogen, carbon monoxide, hydrogen sulfide, hydrogen, methane, 1.11% water.
Black
powder made with less-expensive and more plentiful sodium nitrate (in
appropriate proportions) works just as well but is more hygroscopic than
powders made from potassium nitrate—popularly known as saltpeter. Because corned black
powder grains made with saltpeter are less affected by moisture in the air,
they can be stored unsealed without degradation by humidity. Muzzleloaders have been known to
fire after hanging on a wall for decades in a loaded state, provided they
remained dry. By contrast, black powder made with sodium nitrate must be kept
sealed to remain stable.
Gunpowder
contains 3 megajoules per kilogram and contains its
own oxidant. For comparison, the specific energy of TNTis 4.7 megajoules per kilogram, and
the specific energy of gasoline is 47.2 megajoules
per kilogram (though gasoline requires an oxidant, so an optimized gasoline and
O2 mixture contains
10.4 megajoules per kilogram). Gunpowder is alow explosive, so it does not detonate but rather deflagrates. Since it contains its
own oxidizer and additionally burns faster under pressure, its combustion is
capable of bursting containers such as shell, grenade, or improvised "pipe
bomb" or "pressure cooker" casings to form shrapnel.
In
quarrying, high explosives are generally preferred for shattering rock.
However, because of its low brisance, black powder causes
fewer fractures and results in more usable stone compared to other explosives,
making black powder useful for blasting monumental stone such as granite and marble. Black powder is well
suited for blank
rounds, signal flares, burst charges, and rescue-line
launches. Black powder is also used in fireworks for lifting shells, in rockets
as fuel, and in certain special effects.
Black
powder has a low energy density compared to modern
"smokeless" powders, and thus to achieve high energy loadings, large
amounts of black powder are needed with heavy projectiles. Black powder also
produces thick smoke as a byproduct, which in military applications may give a
soldier's location away to an enemy observer and may also impair aiming for
additional shots.
Combustion
converts less than half the mass of black powder to gas. The rest ends up as a
thick layer of soot inside the barrel.
In addition to being a nuisance, the residue from burnt black powder is
hygroscopic and with the addition of moisture absorbed from the air, this
residue forms a caustic substance. The soot contains potassium oxide or sodium oxide that turns
into potassium hydroxide, or sodium hydroxide, which corrodes wrought iron or steel gun barrels. Black
powder arms must be well cleaned both inside and out to remove the residue. The
matchlock musket or pistol (an early gun ignition system), as well as the
flintlock would often be unusable in wet weather, due to powder in the pan
being exposed and dampened. Because of this unreliability, soldiers carrying
muskets, known as musketeers, were armed with
additional weapons such as swords or pikes. The bayonet was developed to
allow the musket to be used as a pike, thus eliminating the need for the
soldier to carry a secondary weapon.
The United Nations Model Regulations
on the Transportation of Dangerous Goods and national
transportation authorities, such as United States Department
of Transportation, have classified gunpowder (black powder) as a Group
A: Primary explosive substance for shipment because it ignites so
easily. Complete manufactured devices containing black powder are usually
classified as Group D: Secondary detonating substance, or black powder,
or article containing secondary detonating substance, such as firework,
class D model
rocket engine,
etc., for shipment because they are harder to ignite than loose powder. As
explosives, they all fall into the category of Class 1.
Besides
its use as an explosive, gunpowder has been occasionally employed for other
purposes; after the Battle of Aspern-Essling (1809), the surgeon
of the Napoleonic Army Larrey, lacking salt, seasoned a horse meat bouillon for the wounded
under his care with gunpowder.[118][119] It was also used
for sterilization in ships when there was no alcohol.
Jack Tars (British sailors)
used gunpowder to create tattoos when ink wasn't
available, by pricking the skin and rubbing the powder into the wound in a
method known as traumatic tattooing.[120]
Christiaan Huygens experimented with
gunpowder in 1673 in an early attempt to build an internal combustion engine, but he did not succeed.
Modern attempts to recreate his invention were similarly unsuccessful.
Fireworks
use gunpowder as lifting and burst charges, although sometimes other more
powerful compositions are added to the burst charge to improve performance in
small shells or provide a louder report. Most modern firecrackers no longer
contain black powder.
Beginning
in the 1930s, gunpowder or smokeless powder was used in rivet guns, stun guns for animals, cable
splicers and other industrial construction tools.[121] The "stud
gun" drove nails or screws into solid concrete, a function not possible
with hydraulic tools. See powder-actuated tool. Shotguns have been used
to eliminate persistent material rings in operating rotary kilns (such as those
for cement, lime, phosphate, etc.) and clinker in operating furnaces, and
commercial tools make the method more reliable.[122]
Near
London in 1853, Captain Shrapnel demonstrated a method for crushing
gold-bearing ores by firing them from a cannon into an iron chamber, and
"much satisfaction was expressed by all present". He hoped it would
be useful on thegoldfields of California and Australia. Nothing came of the
invention, as continuously-operating crushing machines that achieved more
reliable comminution were already coming
into use.[123]
2.
Jump up^ Jai Prakash
Agrawal (2010). High Energy Materials: Propellants, Explosives and
Pyrotechnics. Wiley-VCH. p. 69. ISBN 978-3-527-32610-5.
5.
Jump up^ Anne Marie
Helmenstine, Ph.D."Gunpowder Facts,
History and Description". About.com Education.
6.
Jump up^ Chase 2003:31 : "the
earliest surviving formulas for gunpowder can be found in the Wujing zongyao, a
military work from around 1040"
7.
^ Jump up to:a b c Buchanan 2006, p. 2 "With
its ninth century AD origins in China, the knowledge of gunpowder emerged from
the search by alchemists for the secrets of life, to filter through the
channels of Middle Eastern culture, and take root in Europe with consequences
that form the context of the studies in this volume."
8.
^ Jump up to:a b c Joseph Needham;
Gwei-Djen Lu; Ling Wang (1987). Science and civilisation in China, Volume
5, Part 7. Cambridge University Press. pp. 48–50. ISBN 978-0-521-30358-3.
9.
Jump up^ Owen Compliance
Services."Black Powder" (PDF). Material Safety
Data Sheet. Retrieved31 August 2014.
10.
Jump up^ Hazel Rossotti
(2002). Fire: Servant, Scourge, and Enigma. Courier Dover Publications.
pp. 132–137. ISBN 978-0-486-42261-9.
11.
Jump up^ Jack Kelly Gunpowder:
Alchemy, Bombards, and Pyrotechnics: The History of the Explosive that Changed
the World, Perseus Books Group: 2005, ISBN 0-465-03722-4,ISBN 978-0-465-03722-3, 272 pages
13.
^ Jump up to:a b Gábor Ágoston
(2005). Guns for the sultan: military power and the weapons industry in
the Ottoman Empire. Cambridge University Press. p. 15. ISBN 978-0-521-84313-3.
14.
Jump up^ Ingham-Brown,
George (1989)The Big Bang: A History of Explosives, Sutton
Publishers, ISBN 0-7509-1878-0, ISBN 978-0-7509-1878-7, page vi
15.
Jump up^ Kelly, Jack
(2005) Gunpowder: Alchemy, Bombards, and Pyrotechnics: The History of
the Explosive that Changed the World, Perseus Books Group, ISBN 0-465-03722-4, ISBN 978-0-465-03722-3, page 22
16.
Jump up^ Bert S. Hall,
"Introduction, 1999" pp. xvi–xvii to the reprinting ofJames
Riddick Partington (1960). A history of Greek fire and gunpowder. JHU
Press. ISBN 978-0-8018-5954-0.
17.
^ Jump up to:a b Peter Purton
(2009). A History of the Late Medieval Siege, 1200–1500. Boydell &
Brewer. pp. 108–109. ISBN 978-1-84383-449-6.
18.
Jump up^ Bert S. Hall,
"Introduction, 1999" p. xvii to the reprinting of James
Riddick Partington (1960). A history of Greek fire and gunpowder. JHU
Press. ISBN 978-0-8018-5954-0.
21.
Jump up^ Lorge, Peter A.
(2008). The Asian military revolution, 1300-2000 : from gunpowder to
the bomb (1. publ. ed.). Cambridge: Cambridge University Press.
p. 32.ISBN 978052160954-8.
24.
Jump up^ Peter Allan
Lorge (2008), The Asian military revolution: from gunpowder to the bomb,
Cambridge University Press, p. 18, ISBN 978-0-521-60954-8
25.
Jump up^ Needham 1986, p. 7 "Without
doubt it was in the previous century, around +850, that the early alchemical
experiments on the constituents of gunpowder, with its self-contained oxygen,
reached their climax in the appearance of the mixture itself."
26.
Jump up^ Chase 2003:1 "The earliest
known formula for gunpowder can be found in a Chinese work dating probably from
the 800s. The Chinese wasted little time in applying it to warfare, and they
produced a variety of gunpowder weapons, including flamethrowers, rockets,
bombs, and land mines, before inventing firearms."
28.
Jump up^ Delgado, James
(February 2003)."Relics of the
Kamikaze".Archaeology. Archaeological Institute of
America. 56 (1).
30.
Jump up^ Peter Allan
Lorge (2008), The Asian military revolution: from gunpowder to the bomb,
Cambridge University Press, pp. 33–34,ISBN 978-0-521-60954-8
31.
Jump up^ Kelly 2004:22 'Around year 1240,
Arabs acquired knowledge of saltpeter ("Chinese snow") from the East,
perhaps through India. They knew of gunpowder soon afterward. They also learned
about fireworks ("Chinese flowers") and rockets ("Chinese
arrows"). Arab warriors had acquired fire lances before year 1280. Around
that same year, aSyrian named Hasan
al-Rammah wrote a book that, as he put it, "treats of machines of fire to
be used for amusement or for useful purposes." He talked of rockets,
fireworks, fire lances, and other incendiaries, using terms that suggested he
derived his knowledge from Chinese sources. He gave instructions for the purification
of saltpeter and recipes for making different types of gunpowder.'
32.
^ Jump up to:a b c d Hassan, Ahmad Y."Transfer of Islamic
Technology to the West: Part III". History of Science
and Technology in Islam.
33.
Jump up^ Peter Watson
(2006). Ideas: A History of
Thought and Invention, from Fire to Freud. HarperCollins.
p. 304. ISBN 978-0-06-093564-1.The first use of a metal
tube in this context was made around 1280 in the wars between the Song and the
Mongols, where a new term, chong, was invented to describe the new
horror...Like paper, it reached the West via the Muslims, in this case the
writings of the Andalusian botanist Ibn al-Baytar, who died in Damascus in
1248. The Arabic term for saltpetre is 'Chinese snow' while the Persian usage
is 'Chinese salt'.28
34.
Jump up^ Cathal J. Nolan
(2006). The age of wars of
religion, 1000–1650: an encyclopedia of global warfare and civilization. Volume 1 of Greenwood
encyclopedias of modern world wars. Greenwood Publishing Group.
p. 365. ISBN 0-313-33733-0.
Retrieved 2011-11-28.In either case, there is linguistic evidence of
Chinese origins of the technology: in Damascus, Arabs called the saltpeter used
in making gunpowder "Chinese snow," while in Iran it was called
"Chinese salt." Whatever the migratory route
35.
Jump up^ Oliver Frederick
Gillilan Hogg (1970). Artillery: its origin,
heyday, and decline. Archon Books. p. 123. The
Chinese were certainly acquainted with saltpetre, the essential ingredient of
gunpowder. They called it Chinese Snow and employed it early in the Christian
era in the manufacture of fireworks and rockets.
36.
Jump up^ Oliver Frederick
Gillilan Hogg (1963). English artillery,
1326–1716: being the history of artillery in this country prior to the
formation of the Royal Regiment of Artillery. Royal Artillery
Institution. p. 42. The Chinese were certainly acquainted with
saltpetre, the essential ingredient of gunpowder. They called it Chinese Snow
and employed it early in the Christian era in the manufacture of fireworks and
rockets.
37.
Jump up^ Oliver Frederick
Gillilan Hogg (1993). Clubs to cannon: warfare
and weapons before the introduction of gunpowder (reprint ed.).
Barnes & Noble Books. p. 216.ISBN 1-56619-364-8.
Retrieved2011-11-28. The Chinese were certainly acquainted with saltpetre,
the essential ingredient of gunpowder. They called it Chinese snow and used it
early in the Christian era in the manufacture of fireworks and rockets.
38.
Jump up^ Partington, J.
R. (1960). A History of Greek Fire
and Gunpowder(illustrated, reprint ed.). JHU Press. p. 335. ISBN 0801859549.
Retrieved 2014-11-21.
39.
Jump up^ Needham, Joseph;
Yu, Ping-Yu (1980). Needham, Joseph, ed.Science and Civilisation
in China: Volume 5, Chemistry and Chemical Technology, Part 4, Spagyrical
Discovery and Invention: Apparatus, Theories and Gifts. Volume 5. Contributors
Joseph Needham, Lu Gwei-Djen, Nathan Sivin (illustrated, reprint ed.).
Cambridge University Press. p. 194. ISBN 052108573X.
Retrieved 2014-11-21.
42.
Jump up^ Ancient Discoveries, Episode 12: Machines of
the East, History Channel, 2007 (Part 4 and Part 5)
43.
Jump up^ Nelson, Cameron
Rubaloff (2010-07). Manufacture and
transportation of gunpowder in the Ottoman Empire: 1400-1800 M.A. Thesis.
44.
Jump up^ William H.
McNeill (1992). The Rise of the West: A
History of the Human Community. University of Chicago Press.
p. 492. ISBN 0-226-56141-0. Retrieved 29
July 2011.
45.
Jump up^ Michael Kohn
(2006), Dateline Mongolia: An
American Journalist in Nomad's Land, RDR Books,
p. 28, ISBN 1-57143-155-1, retrieved 29
July 2011
46.
Jump up^ Robert Cowley
(1993). Robert Cowley, ed. Experience of War(reprint ed.). Random
House Inc. p. 86. ISBN 0-440-50553-4. Retrieved 29
July 2011.
47.
Jump up^ Kenneth Warren
Chase (2003).Firearms: a global
history to 1700(illustrated ed.). Cambridge University
Press. p. 58. ISBN 0-521-82274-2. Retrieved 29
July 2011.
48.
Jump up^ C. F. Temler, Historische
Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Kopenhagen ...
ubersetzt ... von V. A. Heinze, Kiel, Dresden and Leipzig, 1782, i, 168, as
cited in Partington, p. 228, footnote 6.
49.
Jump up^ Joseph Needham;
Gwei-Djen Lu; Ling Wang (1987). Science and civilisation in China, Volume
5, Part 7. Cambridge University Press. p. 358. ISBN 978-0-521-30358-3.
50.
Jump up^ Bert S. Hall,
"Introduction, 1999" p. xxiv to the reprinting of James
Riddick Partington (1960). A history of Greek fire and gunpowder. JHU
Press. ISBN 978-0-8018-5954-0.
55.
Jump up^ Molerus, Otto.
"History of Civilization in the Western Hemisphere from the Point of View
of Particulate Technology, Part 2," Advanced Powder Technology 7 (1996):
161-66
58.
Jump up^ Philip, Chris
(1988). A bibliography of firework books : works on recreative
fireworks from the sixteenth to the twentieth century. Dingmans Ferry, Pa.:
American Fireworks News. ISBN 978-0929931005.
59.
Jump up^ In 1777 Lavoisier
named oxygen, which had earlier been isolated byPriestley; the realization that
saltpeter contained this substance was fundamental to understanding gunpowder.
61.
Jump up^ Metzner, Paul
(1998), Crescendo of the Virtuoso: Spectacle, Skill, and Self-Promotion in
Paris during the Age of Revolution, University of California Press
63.
Jump up^ Ross,
Charles. The Custom of the Castle: From Malory to Macbeth.
Berkeley: University of California Press, c1997. [1] pages 131-130
65.
Jump up^ Pritchard, Tom;
Evans, Jack; Johnson, Sydney (1985), The Old Gunpowder Factory at
Glynneath, Merthyr Tydfil: Merthyr Tydfil & District Naturalists' Society
67.
Jump up^ MacDougall, Ian
(2000). 'Oh, ye had to be careful' : personal recollections by Roslin
gunpowder mill and bomb factory workers. East Linton, Scotland: Tuckwell Press
in association with the European Ethnological Research Centre and the Scottish
Working People's History Trust. ISBN 1-86232-126-4.
68.
Jump up^ Iqtidar Alam
Khan (2004).Gunpowder And Firearms: Warfare In Medieval India. Oxford
University Press. ISBN 978-0-19-566526-0.
69.
^ Jump up to:a b Iqtidar Alam
Khan (25 April 2008). Historical Dictionary of
Medieval India. Scarecrow Press. p. 157. ISBN 978-0-8108-5503-8.
75.
^ Jump up to:a b c "India."
Encyclopædia Britannica. Encyclopedia Britannica 2008 Ultimate Reference Suite.
Chicago: Encyclopedia Britannica, 2008.
76.
Jump up^ "rocket and
missile system." Encyclopædia Britannica. Encyclopædia Britannica 2008
Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2008.
77.
^ Jump up to:a b Dipanegara, P. B.
R. Carey,Babad Dipanagara: an account of the outbreak of the Java war,
1825-30 : the Surakarta court version of the Babad Dipanagara with
translations into English and Indonesian volume 9: Council of the
M.B.R.A.S. by Art Printing Works: 1981.
78.
Jump up^ Atsushi, Ota
(2006). Changes of regime and social dynamics in West Java : society,
state, and the outer world of Banten, 1750-1830. Leiden: Brill. ISBN 90-04-15091-9.
79.
^ Jump up to:a b Thomas Stamford
Raffles, The History of Java, Oxford University
Press, 1965 (originally published in 1817), ISBN 0-19-580347-7
80.
Jump up^ Raffles, Thomas
Stamford (1978).The History of Java ([Repr.]. ed.).
Kuala Lumpur: Oxford University Press. ISBN 0-19-580347-7.
81.
Jump up^ US Department of
Agriculture (1917). Department Bulleting No.
316: Willows: Their growth, use, and importance. The Department.
p. 31.
86.
Jump up^ Jecock, Marcus;
Dunn, Christopher; et al. (2009). "Gatebeck Low Gunpowder Works and the
Workers' Settlements of Endmoor and Gatebeck, Cumbria". Research
Department Report Series. English Heritage. 63-2009. ISSN 1749-8775.
87.
Jump up^ Heller, Cornelia
(December 2009)."Stassfurt" (PDF). STASSFURT - FAD.
Ministry of Regional Development and Transport Saxony-Anhalt. p. 10.
Retrieved27 May 2015.
88.
Jump up^ Frangsmyr, Tore, J.
L. Heilbron, and Robin E. Rider, editors The Quantifying Spirit in the
Eighteenth Century. Berkeley: University of California Press, c. 1990.http://ark.cdlib.org/ark:/13030/ft6d5nb455/ p. 292.
89.
Jump up^ C.E. Munroe (1885)
"Notes on the literature of explosives no. VIII", Proceedings of the
US Naval Institute, no. XI, p. 285
95.
Jump up^ Julian S.
Hatcher, Hatcher's Notebook, Military Service Publishing Company,
1947. Chapter XIII Notes on Gunpowder, pages 300-305.
97.
Jump up^ "Some
Account of Gunpowder".The Saturday Magazine. 422, supplement: 33–40.
January 1839.
98.
Jump up^ Wisniak, J. J.;
Garcés, I. (September 2001). "The Rise and Fall of the Salitre (Sodium
Nitrate) Industry". Indian Journal of Chemical Technology: 427–438.
99.
Jump up^ Ashford, Bob
(2014). "Some Thoughts on Dartmoor Powdermills". Rep. Trans.
Devon. Ass. Advmt Sci. Exeter: The Devonshire Association. 146:
57–82.
101.
Jump up^ Book title Workshop
Receipts Publisher William Clowes and Son limited Author Ernest Spon. Date 1
August 1873.
103.
Jump up^ Cathal J. Nolan
(2006), The age of wars of religion, 1000-1650: an encyclopedia of global
warfare and civilization, Greenwood Publishing Group, p. 365, ISBN 978-0-313-33733-8
105.
^ Jump up to:a b c John Francis
Guilmartin (2003). Gunpowder & galleys: changing technology &
Mediterranean warfare at sea in the 16th century. Conway Maritime Press.
pp. 109–110 and 298–300.ISBN 0851779514.
106.
Jump up^ T.J. Rodman
(1861), Reports of experiments on the properties of metals for cannon
and the qualities of cannon powder, p. 270
109.
^ Jump up to:a b Brown, G.I.
(1998) The Big Bang: A history of Explosives Sutton Publishing
pp.22&32 ISBN 0-7509-1878-0
111.
^ Jump up to:a b Rodney James
(2011). The ABCs of Reloading: The Definitive Guide for Novice to
Expert (9 ed.). Krause Publications. pp. 53–59.ISBN 978-1-4402-1396-0.
115.
Jump up^ Julian S.
Hatcher, Hatcher's Notebook, Stackpole Books, 1962. Chapter XIV,
Gun Corrosion and Ammunition Developments, pages 346-349.
118.
Jump up^ Parker, Harold
T. (1983). Three Napoleonic battles. (Repr., Durham, 1944. ed.).
Durham, NC: Duke Univ. Pr. p. 83. ISBN 0-8223-0547-X.
119.
Jump up^ Larrey is quoted in
French at DrBéraud, Études Hygiéniques de la
chair de cheval comme aliment,Musée des Familles (1841-42).
120.
Jump up^ Rediker, Marcus
(1989). Between the devil and the
deep blue sea : merchant seamen, pirates, and the Anglo-American maritime
world, 1700-1750 (1st pbk. ed.). Cambridge: Cambridge
University Press. p. 12. ISBN 9780521379830.
·
Benton, Captain James G.
(1862). A Course of Instruction
in Ordnance and Gunnery (2 ed.). West Point, New York: Thomas
Publications. ISBN 1-57747-079-6.
·
Brown, G. I.
(1998). The Big Bang: A History
of Explosives. Sutton Publishing. ISBN 0-7509-1878-0.
·
Buchanan, Brenda J., ed.
(2006).Gunpowder, Explosives and
the State: A Technological History. Aldershot:
Ashgate. ISBN 0-7546-5259-9.
·
Chase, Kenneth
(2003). Firearms: A Global
History to 1700. Cambridge University Press. ISBN 0-521-82274-2.
·
Cocroft, Wayne
(2000). Dangerous Energy: The
archaeology of gunpowder and military explosives manufacture. Swindon: English
Heritage. ISBN 1-85074-718-0.
·
Crosby, Alfred W.
(2002). Throwing Fire: Projectile Technology Through History. Cambridge
University Press. ISBN 0-521-79158-8..
·
al-Hassan, Ahmad Y. "Gunpowder
Composition for Rockets and Cannon in Arabic Military Treatises In Thirteenth
and Fourteenth Centuries". History of Science and Technology in
Islam.
·
Johnson, Norman Gardner."explosive". Encyclopædia
Britannica. Chicago: Encyclopædia Britannica Online.
·
Kelly, Jack
(2004). Gunpowder: Alchemy, Bombards, & Pyrotechnics: The History of
the Explosive that Changed the World. Basic Books.ISBN 0-465-03718-6.
·
Khan, Iqtidar Alam
(1996). "Coming of Gunpowder to the Islamic World and North India:
Spotlight on the Role of the Mongols". Journal of Asian
History. 30: 41–5.
·
Khan, Iqtidar Alam
(2004). "Gunpowder and
Firearms: Warfare in Medieval India". Oxford University
Press.doi:10.1086/ahr.111.3.817.