۱۳۹۵ مرداد ۱۸, دوشنبه

مداخل مخزن الادویه عقیلی خراسانی (یازدهم) 7

باروت . (ا)بارود. یَمسو. (برهان ). بارو. (در کلام قدما و اکابردیده نشده و مستحدث است ). (رشیدی ). شوره . دارو. (اسدی ). اَشوش . (تذکره  داود ضریر انطاکی ). ملح البارود.(دزی ج 1). ملح صینی . (تذکره  داود ضریر انطاکی ). حجر آسیوس . اسیوس . اسیوش . حجرالسیوس . (فهرست مخزن الادویه ). بارود. و به لغت سریانی شوره را گویند که جزو اعظم باروت باشد و آن را نمک چینی هم گویند. (برهان ، ذیل بارود). در اصل بمعنی شوره است و بمعنی داروی تفنگ مجاز است زیرا که جزواعظم آن شوره باشد. (غیاث ). شوره را گویند که جزو اعظم باروت است و آن را نمک چینی هم گفته اند. (انجمن آرا). نمک مخصوص است که نامهای دیگرش شوره و نمک چین است . (فرهنگ نظام ). بمعنی باروت که داروی تفنگ است .(انجمن آرا)... و بارو مخفف بارود است . میرزا عبدالقادر تونی در ذکر تسخیر قلعه  بست گوید :
همی سوخت هندو در آن کارزار
چو باروت کاندر وی افتد شرار.
سعید اشرف در تعریف تیغ گوید :
دشمنان را داده از یک جلوه در باد فنا
خرمن باروت را کافی بود برق شرار.
(آنندراج ).

به اصطلاح اهل مغرب اسم زهره  اسیوس و به اصطلاح اهل عراق اسم شوره است و در ابقر مذکور شد و او بخار مائیست که در شوره زار منعقد گردد بعد از رفع اجزاء کثیفه شبیه بنمک سفید میشود و بجهت تحریک اشیاء ثقیله و تغییر معادن ، صقلبی (سالبه ) استخراج نموده و بالفعل مرکب او را با گوگرد و زغال چوب بید بارود نامند. از سموم و در طب غیر مستعمل است و ذرور او حابس خون جراحات تازه است با کمال سوزش و از خواص ابقر است که چون آهن را به زرنیخ بیالایند و با مثل آن و مس بگدازند و بعد از آن شوره را بدان بپاشند مس از آهن صعود نموده آهن در کمال نرمی گردد. (تحفه  حکیم مومن : بارود). مولف مخزن الادویه پس از نقل متن تحفه افزاید: و بالفعل اسم چیزی است مرکب از گوگرد و زغال چوب بید و یابادنجان و یا بید انجیر و یا عشر و یا عروسه و یا امثال اینها و بالجمله چوب هر درختی که زود به آتش درگیرد و آتش آن تند باشد. و شوره  قلمی به اوزان مختلفه مثلاً اگر از برای توپ و تفنگ باشد در یک آثار هندی شوره پنج توله گوگرد و هفت ونیم توله زغال داخل میکنند و بسیار نرم کوبیده واگر بسیار تند خواهند با بول انسان و یا با شراب دوآتشه یا یک آتشه خمیر کرده میکوبند و حبوب بسیار صغارساخته خشک کرده استعمال مینمایند والا با آب . طبیعت آن : گرم و خشک در سوم و چهارم نیز گفته اند. افعال و خواص آن : جالی و مقطع و مفتح سدد و جهت طحال و اوجاع ظهر نافع و ذرور آن حابس نزف الدم جروح تازه است فوراً با کمال سوزش ، و چون موضع وجع مفاصل را خارها زده بارود را نرم ساییده بر آن بمالند وجع آن را زایل گرداند. مضر گرده و ریه مصلح آن کتیرا و عسل است . (مخزن الادویه ص 129). داود ضریر انطاکی در تذکره  خود گوید: گرم خشک است در چهارم یا در وسط و سوم بهترین آن براق زرین تازه و سفید است که زود از هم بپاشد. بلغم را ریشه کن کند... قدر استعمال آن تا نیم درهم است وبدل آن ملح اندرانی است و نخستین کسی که آن را برای جلا و تقطیع استخراج کرد طبیب «بقراط» و برای تحریک اثقال و تغییر معادن سالیسوس صقلبی است . (از تذکره  داود ضریر انطاکی ). و رجوع به ص 70 همین کتاب شود. || بارود. (برهان ). یَمسو. (برهان ). بارو. (در کلام قدما و اکابر دیده نشده و مستحدث است ) (رشیدی ). سُفوف . (شلیمر). گندک . رنجک . (لغت محلی شوشتر نسخه  خطی کتابخانه  مولف ). دارو. داروی تفنگ . (برهان ) (غیاث ) (دزی ج 1) (دمزن ). باروط. ترکیب قابل اشتعال . (دزی ج 1) . گردی که از زغال و گوگرد و شوره سازند و در اسلحه  آتشین بکار برند و گندک و یمسو نیز گویند. و هر گردی که در اسلحه  آتشین بکار برده میشودخواه از اجزاء مذکور باشد و یا از چیز دیگر نیز باروت میگویند مانند باروت بی دود و باروت سفید. و اختراع باروت را به حکمای اسلام نسبت میدهند و بعضی گفته اند این گرد را دانشمندان چین در یک قرن قبل از تولد مسیح اختراع نموده اند. و اول طایفه ای که آن را در جنگ بکار بردند در سال 747 هَ . ق . انگلیسی ها بودند و طریق ساختن آن تا یک مدتی مخفی بود و جز انگلیسها کسی نمیدانست و تجار آن را از انگستان خریده به سایر جاها حمل میکردند و زیادتر از دو کیلو گرم بکسی نمیفروختند. باری باروت خوب و اعلا مرکب است از 75 جزء شوره و 12/5 جزء گوگرد و همان مقدار زغال . (ناظم الاطباء). ترکیبی است از پنج قسمت شوره و یک قسمت گوگرد و یک قسمت زغال بید. گوگرد و شوره را با هم نرم کوبیده وزغال را در آب شسته که گرد و خاکستر آن برود. سپس هر سه را در هاون سنگی ریخته با دسته  چوبی بکوبند و چون بخشکی گراید با آب رطوبت دهند تا رنگش نیلی شود و پس از آن در ظرف چرمی کنند تا چهار ساعت بسرعت حرکت دهند و چون مخلوط شود به آب رطوبت دهند و مانند خمیر بگسترانند و با چاقو قطعه قطعه سازند و در غربال آهنین بیزند و در ظرفی کنند و حرکت دهند تا دانه دانه و مجلی گردد و در حرارت 66 درجه بتدریج خشک سازند و بکار برند. (از منتخب الخواص : بارود).
از اوایل قرن مسیحی این ماده شناخته شده است . چینی ها از آن درحرارت صنعتی استفاده میکردند. آتش گرگوا در قرن هفتم نوعی آتش انفجاری بود. تا قرن 14 م . اندیشه  بکار بردن آن در تیراندازی هنوز بوجود نیامده بود. انگلیس ها آن را در 1346 م . در جنگ کرسی بکار بردند. اسامی راجر بیکن ، آلبرت کبیر و برتولد شواتز مترادف ورود باروت در توپخانه  اروپاست . باروت از چند نوع مواد مختلف ترکیب میشود که نیروی ناگهانی قابل ملاحظه ای بوجود می آورد که از آزاد ساختن گاز فراوان با حرارت زیاد بدست می آید که نتیجه  عکس العمل شیمیایی است . نتایج حاصله از احتراق باروت بستگی بسرعت اشتعال آن دارد اگر سرعت اشتعال زیاد باشد فشار و قدرت حاصله از گاز آنی بوده و ایجاد تخریب بسیار میکند. باروت یا سیاه است و یا قهوه ای . باروت سیاه از دو عنصر سریعالاشتعال ساخته میشود که یکی کربن و دیگری گوگرد به اضافه  جسمی که قبول اکسیژن کند. ازین سه ماده  ترکیبی کربن تاثیرش در ساختن باروت از دیگر مواد بیشتر است . مواد این سه عنصر قابل تمیز است و تابلو زیر بدست می آید و مختص بباروت سیاهی است که در فرانسه بکار میرود. (لاروس کبیر).
جرجی زیدان در تاریخ تمدن خود آرد: فرنگی ها اختراع مهمی را بخود نسبت میدهند در صورتی که این اختراع از عربها بوده است . بنابگفته  فرنگیان شخصی بنام شوارتز در سال 1320 م . (719 هَ . ق .) باروت را اختراع کرده است اما یک راهب انگلیسی موسوم به راجر بیکن که در قرن 13 م . میزیسته به ترکیباتی اشاره کرده که در زمان وی معمول بوده و به باروت شباهت داشته است . حقیقت مطلب آنست که عربها پیش از دیگران استعمال باروت را میدانستند و اگر آنها باروت را اختراع نکرده باشند لااقل باروت توسط آنان بمردم قرون وسطی منتقل شده است . کوندی خاورشناس اسپانیولی که در سال 1820 در گذشته صریحاً نوشته است که عربها در جنگ سر قوسه در سال 1118 م . اسلحه  آتشین بکار بردند. از آن گذشته مورخین عرب نیز در ضمن تاریخ جنگهای اسلامی در قرن سیزده میلادی (در افریقا) از اسلحه  آتشین نام برده اند چنانکه ابن خلدون راجع بجنگ ابو یوسف سلطان مراکش برای تسخیر سجلماسه و بیرون آوردن آن از دست فرمانروایان عبدالواد (672 هَ . ق ./ 1273 م .) چنین میگوید:«همین که سلطان ابویوسف بلاد مغرب (افریقا) را گشود شهرها و دژهای آن را بزیر فرمان درآورد و بر مرکز خلافت خاندان عبدالمومن دست یافته آثار آنها را برانداخت و شهرهای طنجه و سبته لنگرگاه و سرحد مغرب را گشود آنگاه بطرف بلاد قبله توجه کرده ، مصمم شد سجلماسه را از فرمانروایان عبدالواد بستاند و دعوت آنان را برانداخته بنام خود دعوت کند. لذا در ماه رجب 672 هَ .ق . لشکر بدانجا کشید و سپاهیانی از عرب و بربر و زناته گرد آورد و منجنیق و تانک چوبی و گردونه های نقب جهنده (آتش یونانی ) با ریگ های آهنین و اندام نقب انداز همراه برد و از انباری که با آتش و باروت بطور شگفت آوری مشتعل شده بود بدشمن آتش می افکند و قدرت خداوند از این عملیات هولناک ظاهر میگشت . خلاصه یکسال تمام شب و روز آنجا را حصار داده جنگید تا اینکه روزی دیوارهای برج بر اثر سنگباران کردن از منجنیق فروریخت و سوراخی در آن پدید آمد و سپاهیان از آن سوراخ بشهر هجوم آوردند.» این گفته ابن خلدون گواهی میدهد که پیش از شوارتز عربها باروت داشتند، چه شوارتز (مخترع باروت بقول فرنگی ها) در سال 1320 م . میزیسته و عربها در سال 1273 در جنگ مذکور باروت استعمال کرده اند. از آن گذشته عربها در سال 13 م . در کتب مربوطه توصیفی از باروت کرده اند که کاملاً شبیه باروت کنونی می باشد. در کتابخانه  پترزبورگ (لنین گراد) تصویر دو مرد عرب است که اسلحه  آتشین بکار میبرند. (از ترجمه  تاریخ تمدن اسلامی جرجی زیدان ج 1 صص 184-185: اخترع باروت ) و متن عربی ص 145. || مثل باروت ، سخت و تند و تیز. آتشین . رجوع به تذکرةالملوک چ دوم ص 29 و مجمل التواریخ گلستانه ص 23 و فرهنگ شعوری ج 1 ورق 156 و لغات تاریخیه و جغرافیه ترکی ج 2 و اسیوس و دارو و بارود شود.
//////////////
بارود
بفتح با و الف و ضم راء مهمله و سکون واو و دال مهمله و بفارسی و بهندی باروت بتاء مثناه فوقانیه بجای دال نامند و باصطلاح اهل مغرب اسم زهره الاسیوس است و در اسیوس مذکور شد و باصطلاح اهل عراق اسم شوره است و در ابقر ذکر یافت و بالفعل اسم چیزی است مرکب از کوکرد و زغال چوب بید و یا بادنجان و یا بید انجیر و یا عشر و یا اروسه و یا امثال اینها و بالجمله چوب هر درختی که زود بآتش درکیرد و آتش آن تند باشد و شورۀ قلمی باوزان مختلفه مثلا اکر از برای توپ و تفنک باشد در یک آثار هندی شوره پنج توله کوکرد و هفت و نیم توله زغال داخل می کنند و بسیار نرم کوبیده اکر بسیار تند خواهند با بول انسان و یا با شراب دو آتشه یا یک آتشه خمیر کرده می کوبند و حبوب بسیار صغار ساخته خشک کرده استعمال می نمایند و الا با آب
طبیعت آن
کرم و خشک در سوم و در چهارم نیز کفته اند
افعال و خواص آن
جالی و مقطع و مفتح سدد و جهت طحال و اوجاع ظهر نافع و ذرور آن حابس نزف الدم جروح تازه است فورا با کمال سوزش و چون موضع وجع مفاصل را خارها زده بارود را نرم سائیده بر ان بمالند وجع آن را زائل کرداند مضر کرده و رئه مصلح آن کثیرا و عسل است.
مخزن الادویه عقیلی خراسانی
/////////////
باروت به گفته دهخدا همان «بارود» است و میگوید در برهان قاطع آمده: به سریانی، شوره را «بارود» گویند... ترکیب شوره را با گوگرد و زغال چوب بید و یا بادنجان یا هر چوبی که زغالش خوب بسوزد باروت نامند.[۱]

باروت ماده‌ای است که به‌سرعت می‌سوزد و از همین رو در سلاح‌های گرم به‌عنوان ماده پیشرانه بکار می‌رود. باروت از ترکیب ماده‌های پتاسیم نیترات، کربن و سولفور ساخته میشود. باروت میتواند از ذغال وپتاسیم نیترات نیز ساخته شود ولی نه به کیفیتی که با سولفور مخلوط باشد، زیرا ماده سولفور یکی از مواد فرار و بسیار قابل احتراق و انفجار است. باروت به دو دسته تقسیم میشود.

با قدرت انفجار پایین: دارای مواد انفجاری کم قدرت و مواد درونی آن به صورت کامل احتراق نمی‌یابند.
با قدرت انفجار فوق‌العاده زیاد: این دسته از باروت‌ها دارای قدرت انفجاری بسیار بالا هستند.
باروت‌ها دو گونه هستند:
باروت سیاه
باروت بی‌دود

موشک چینی اولیه
باروت سیاه نخستین گونه باروت بود که بدست بشر ساخته شد. اختراع آن را نزدیک به قرن‌های ۷ تا ۹ میلادی به چینی‌ها، مسلمانان و حتی به راجر بیکن (کیمیاگر انگلیسی سده ۱۳ میلادی) نسبت می‌دهند. [۲][۳]

در گذشته از کود کبوتر که در کبوترخانه ها جمع آوری میشد، برای تولید باروت استفاده میکردند. به همین دلیل اقتصادی قابل توجه، تعداد کبوتر خانه در دوران صفوی یکباره چندین برابر شد. از این رو شاه عباس صفوی مالیات نسبتاً سنگینی بر کبوتر خانه ها بست. امروزه هنوز در روستا ها از کود کبوتر چنین استفاده ای میشود.

نگارخانه[ویرایش]
经总要全前集卷十二 药制法.jpg

经总要前集卷十二 雳火球制法.jpg

经总要全前集卷十二 雳火球图.jpg

经总要 竹火鷂 鐵嘴火鷂.jpg
منابع[ویرایش]
پرش به بالا ↑ مقاله باروت در فرهنگ دهخدا [۱]
پرش به بالا ↑ پروفسور هاینتس والتر ویلد، متخصص مواد منفجره در دانشگاه کلائوس تال آلمان
پرش به بالا ↑ ویکی‌پدیای آلمانی
////////////
البارود هو خليط سريع الاشتعال أو مادة متفجرة دافعة صلبة قابلة لإحداث تفاعل ناشر للحرارة في معزل عن الهواء الخارجي مع إصدار كميات كبيرة من الغازات وبعض أنواع البارود مركبات بوليميرية عالية التكثف شديدة الاحتراق يمكن تصنيفها في صنفين بحسب تركيب مادة البارود والعناصر التي تتألف منها : البارود المتغاير الخواص منه البارود الأسود أو البارود الدخاني والبارود الثابت الخواص القابل للانضغاط كالبارود القطني اللادخاني يستعمل لدفع المقذوفات أو لصنع القنابل ويتكون من ملح البارود والكبريت والفحم، كان يستعمل في دفع القذائف الحربية وصنع القنابل حتى الحرب العالمية الأولى حيث استبدل البارود المستخدم لدفع المقذوفات بالكوردايت واستبدل البارود المستخدم لصنع المسدسات بالديناميت. نسب مكونات البارود: ملح البارود 75%, فحم 15%, كبريت 10%. ملح البارود واسمه العلمي "نترات البوتاسيوم" وتركيبه "KNO3" هو المادة المؤكسدة حيث يحتوي على ثلاث ذرات أكسجين يمكنها الارتباط مع ذرات الفحم والكبريت لإحداث الاشتعال المطلوب. معادلة الاحتراق هي كالتالي:
2KNO3 + S + 3C → K2S + N2 + 3CO2
تاريخه[عدل]

صورة من كتاب العز والرفعة.
كان أول من استخدم البارود هم المسلمون العرب حيث يُذكر في ثورة الزنج أن العمال الزنوج في العراق مدينة البصرة كانوا ينقون ملح البارود عام 71هـ/690م, وقد عرف الكيميائيون المسلمون العرب الأوائل ملح البارود في القرن السابع حيث كان يستعمل لأغراض حربية مثل نسف الحصون وكذلك للألعاب النارية, وأول استخدام للمدفع كان في حصار سرقسطة في عام 511هـ/1118م ثم في عام 672هـ/1273م حيث استخدمه حاكم مسلم عربي هو السلطان المريني أبي يوسف، في حصاره لمدينة سجلماسة. المعروف أن أول من استخدم البنادق والمسدسات والقنابل اليدوية هم المسلمون العرب[1] حيث استعملوها في الدفاع عن غرناطة في القرن الرابع عشر. ولما سقطت الأندلس بيد الأسبان اخذوا البندقية العربية التي كانت تدعى "القربينة" منهم واستعملوها في القضاء على الهنود الحمر.
في كتاب "الفروسية والمكائد الحربية" لحسن الرماح المتوفى سنة 693هـ/1294م هناك شرح لصناعة أنواع عديدة من الصواريخ "الطيار" تختلف بالمدة والسرعة والحجم وكذلك نوع من الطوربيدات يصطدم بالسفن وينفجر.
أستخدم العثمانيون المدافع والصواريخ في حصار القسطنطينية 857هـ/1453م، وكانت أحجام مدافعهم كبيرة حيث يصل طول الماسورة إلى 8 أمتار وقطر الفوهه 75ســــم.
و البارود من أقدم المتفجرات ولا يمكن على وجه الدقة تحديد من أول من إخترعه ،كما لا يعرف أصل تسميته بالعربية ويبدو أنها من السريانية وبعد أن توصل العرب إلى معرفة خواص ملح الصخر والبارود في أوائل القرن السابع للهجرة شملوه تحت اسم مادة 'نفط' التي صار لها منذ ذلك الحين معان جديدة وتذكر المصادر الإسبانية والعربية في الأندلس والمغرب عرفوا البارود واستعملوا المدافع في الحرب منذ أواخر القرن السابع عشر ميلادي وبمرور الوقت صارت كلمة بارود تعني البارود نفسه أو كحل البارود (ذرور) وصار ملح البارود هو الاسم الذي يطلق على ملح الصخر، ومن البارود اشتقت كلمة البارودة التي تعني البندقية.
لم يستعمل البارود الأسود في أغراض التعدين قبل القرن17 م إلا أن استخدامه في المناجم لم ينتشر إلا في أوائل القرن 18 لأسباب كثيرة منها ارتفاع تكاليف تحضيره وعدم توافر أدوات الثقب المناسبة والخوف من حدوث إنهيارت في سقف المنجم، أما أول استخدام للبارود في أعمال الهندسة المدنية والعمارة فكان في 1679 إبان حفر نفق مالباس عند قناة دي ميدي في فرنسا وقد ظل البارود الأسود المادة المتفجرة والوحيدة المستعملة في المقالع وأعمال الطرق حتى منتصف القرن 19 وظل الدافعة الوحية حتى نهاية ذلك القرن إلى أن تم التوصل إلى بدائل أكثر أمنا من البارود الأسود وخاصة الديناميت المحسن والبارود اللادخاني.
و لم يعد يسمح باستعمال البارود الأسود في المناجم تحت الأرض ، لكنه مايزال يستعمل في المقالع المكشوفة وفي بعض الأغراض الخاصة في الاستخدامات العسكرية.
إن اختراع أول مادة شديدة الانفجار ينسب عموما إلى الكيميائي السويسري من أصل ألماني كرستيان شونباينchristian fridrich schomein الذي توصل في عام 1845 إلى صنع البارود القطني (النتروسيلولوز) بنقع القطن في مزيج من حمض الازوت وحمض الكبريت ثم غسل الناتج بالماء لا زالة بقايا الحمض. و في عام 1860 توصل ضابط رو سي يدعى أرنست شولتزه e.schultze إلى صنع مادة دافعة شبيهة بسابقتها من نقع قطع صغيرة من الخشب في حمض الاروت وبعد إزالة بقايا الحمض أشبع الناتج بالابريوم ونترات البوتاسيوم وكان البارود الذي حصل عليه شولتزه وحمل اسمه لبنادق الصيد، ولكنه قليل الصلاحية وأكثر البنادق الحربية.
و في سنة 1884 توصل الكيميائي الفرنسي بول فيي paul vieill إلى صنع بارود دخاني غرواني مكثف هو powder B قريب في صيغته من البارود الادخاني المعروف اليوم.
و في عام 1888 أنتج الكيميائي السويدي ألفرد نوبل alfred nebelمادة جديدة أسماها الستيت ballestiteوتتألف من مزيج هلامي القوام gelatinizedمن النتروهلولوز 40 % المخفف الأزوت مع النيتروغليسرين60 %وقطعهاشرائح ،وقد ظلت هذه المادة تستعمل بنجاح مدة زادت على 75 عاما. طور البريطانيون فيما بعد عددا من المنتجات المماثلة لها أطلقو عليها إسم الكوردايت. في عام 1909م توصلت الولايات المتحدة الأمركية إلى نوع من البارود الادخاني أكثر أمانا أساسه القطن المنترج nitrocottonالحاوي على نسبة منخفضة من الأزوت ويدعى بيروسلولوز pynocellulose،وهو قابل للانحلال في الإيثر والكحول وقد تبين أن هذا النوع من البارود يصلح للاستعمال في جميع أنواع المدافع، وكان المادة الدافعة الرئسية المستخدمة في الحرب العالمية الأولى.
اقسامه[عدل]

طاحونة البارود
و بعض أنواع البارود مركبات بوليميرية عالية التكثف شديدة الاحتراق يمكن تصنيفها في صنفين بحسب تركيب مادة البارود والعناصر التي تتألف منها:
البارود الأسود (الدخاني):نسمي هذا النوع من البارود أسودللونه الذي يغلب عليه لون فحم الخشب وسميا دخانيا لأن الغازات المنطلقة عند احتراقه ممزوجة بدخان أسود ،يتألف من المواد الصلبة الناتجة عن بقايا الاحتراق.
يتألف البارود الأسود من خليط جيد المزج بين نترات البوتاسيوم أو الصوديوم وفحم الخشب الكبريت بنسب تختلف بحسب الغاية المستخدم لها، ويستعمل في صنع الحشوات الدافعة والحشوات المتفجرة لمقذوفات الأسلحة النارية المقذوفات الصلبة وفي الألعاب النارية وفي المقالع وفي صنع الفتيل المشتعل
احتراق البارود الأسود :البارود الأسود قليل الحساسية بالاحتكاك أو الصدمات ولكي يحترق أو يتفجر لابد من وجود مشعل يحرق البارود بطبقات متوازية في الإتجاه العمودي على سطح الاحتراق فتنتقل موجة الاحتراق والحرارة من طبقة إلى أخرى تليها، إذ يسبعد في هذه الحالة تسرب نواتج الاحتراق والحرارة إلى داخل المادة نفسها وتتوفر في الوقت نفسه في إمكانية التحكم في السرعة الإجمالية لتشكل غازات الاحتراق بمقياس الزمن عن طريق إعطاء مادة البارود الشكل المناسب أما سرعة احتراق البارود تعتمد على قوام مادته ودرجة الحرارة الأولية والضغط ويمكن التحكم فيها بواسطة الإضافات المختلفة.
الفتيل المشتعل:في سنة 1831 توصل تاجر جلد بريطاني وليم بكفورد william bikafordإلى اختراع مشعل أمين للعمل في المناجم يتألف من فتيل منسوج محشو بالبارود الأسود، ثم يطلى الفتيل بمادة مانعة لرطوبة ويغلق بنسيج اخر أو بمادة لدنة.
يوفر الفتيل المشتعل وسيلة أمنية يمكن الركون إليها لإيصال النار إلى الحشوة المتفجرة ،و يعتمد توقيت الانفجار على طول الفتيل وهو دقيق إلى درجة كبيرة ولا يتأثر بالعوامل الجوية أو الماء.
البارود اللادخاني:أو البارود القطني مادة متفجرة دافعة أساسها النتروسيلولوز ((C6H7O2)OH 3.X)ONO2(X)n والنتروسيلولوز مادة بيضاء ليفية القوام تشبه القطن ومن أهم ماتتصف به اختلاف مواصفاتها الفيزيائية والكيميائية باختلاف نسبة ماتحتويه من الازوت (النتروجين)يستعمل البارود اللادخاني في ذخائر الأسلحة النارية والصواريخ الصغيرة التي تعمل بالوقود الصلب وفي أدوات العمل التي تتطلب ضغطا عاليا وسرعة التنفيذ ،و هو ينتج على شكل أقراص أو صفيحات أو أصطوانات أو حبال أو كريات من حجوم مختلفة ويسمى "اللادخانيا"أو "غير مدخن" للتفريق بينه وبين البارود الأسود المدخن.
و البارود اللادخاني سريع الاشتعال لايحتاج إلى أكسجين خارجي وينتج من احتراقه كميات هائلة من الغازات العديمة اللون والحرارة عالية وتعتمد سرعة الاحتراق وحجم غازات المنطلقة على تركيب حبيبات البارود وشكلها ومساحة سطح الاحتراق ،وتزداد سرعة الاحتراق بازدياد الضغط ،و يتفوق البارود الادخاني على البارود الأسود بصفاته الدفعية العالية وعدم تركه بقايا احتراق تذكر وقلة امتصاصه للرطوبة ومحافظته على مواصفاته عند تخزينه ،في شروط طبعتة لمدة طويلة وقلة حساسية للمؤثرات الخارجية وإمكانية تشكيله بأشكال وحجوم مختلفة.
أنواع البارود اللادخانييستعمل البارود اللادخاني اليوم على نطاق واسع وهو يصنف عموما فب صنفين:وحيد الأساس وثنائي الأساس ،يحتوي البارود اللادخاني الوحيد الأساس ،على النتروسلولوز مع بعض الإضافات، وقد حل فيه سيليلوز الخشب محل ألياف القطن، ولا تزيد نسبة الازوت فيه على 12.5-13.5% أما البارود الثنائي الأساس وهو أكثر أنواعه فيشتمل على نسبة 70-80% نتروسيلولوز و 20-30% نتروغليسرين وقد يضاف إلى الصنفين إضافات لضمان ثباتهما وتحسين مواصفاتهما، أما أشهر البارود اللادخاني فهي البارود البيروكسيليني والبارودالنتروغليسيرين وبارود الأمونيوم وثالث تولوين.
وقود الصواريخ الجاف (الصلب) هو الاسم الذي يطلق على البارود الذي يستخدم وقودا في المحركات الصاروخية، وهو مركبات بوليميرية حديثة تتفاعل بالحرارة وتتألف عادة من بيروكلورات الأمونيوم (مؤكسد)، ويتمتع الوقود الصاروخي الجاف بميزات كثيرة يتفوق بها على أنواع الوقود الباليستية الأخرى، فقوة دفعه أكبر وسرعة احتراقه أقل اعتمادا على الضغط ودرجة الحرارة ومجال التحكم في سرعة احتراقه كبيرة عن طريق ضغط الإضافات المختلفة والتحكم في مواصفاتها الفيزيائية والميكانيكية وبسبب مرونة هذا الوقود وإمكانية التحكم في شكله الخارجي يمكن تثبيته مباشرة على جدران المحرك الصاروخي الأمر الذي يزيد من معامل ملء المحرك بالوقود.
المصادر[عدل]
^ مجلة العربي سبتمبر 1987 ص116
كتاب أعجوبة الحضارة الإسلامية.
كتاب من مظاهر التمدن الإسلامي.
صفحة عن مكتشفات العرب (إنجليزي)
كتاب الموسوعة العربية.
///////////////
به آذری باریت:
باریت (باروت)، سولفور، کؤمور و پوتاسیوم‌نیتراتدان اولوشان بیر پارتلاییجی ماده‌دیر. باریت مرمی‌لرین آتیلماسینا و راکتلرین حرکت ائدیلمه‌سینه و یاشقا مقصدلر ایچین ایستیفاده ائدیلیر.

پارالئل لایلارلا یانما زامانی ایستی لیک بیرلایدان باشقاسینا اؤتورولور. بونونلا یانما زامانی گاز عمله گلمه سینی تنظیم له مک اولور. بو دنجیین پلچوسوندان و یانما سرعتیندن اصیلی اولور. دنجیین اؤلچوسو اونلارین فورماسی ، هندسی اؤلچولری ایله تعیین اولونور. یانما زامانی بو اؤلچولر کیچیله و یا بؤیویه بیلر. بئله یانمایا دئقرئسیو و یا پروقرئسسیو دئییلیر.گاز عمله گلمسینده معین قایدا اویغونلوق الده ائتمک اوچون دنجیکلر علاوه یانمایان ماده لرله اؤرتولورلر. باریتین یانما سرعتینه اونون ترکیبی ، باشلانغیج دما و تزییق تاثیر ائدیر.

ایکی نوع باریت مؤوجوددور: تۆتونسوز (نیترو سئلولوز) و تۆتونلو (قاریشیق). راکت لرده تطبیق اولونان باریت لارا برک راکت یاناجاغی دا دئییلیر. نیتروسئلولوز ترکیبلی باریت لاردا اساس کومپونئنت نیتروسئلولوز و حل لئدیجی مایع دیر. بوندا علاوه باریت لارین ترکیبینده چوکونتولر ده واردیر.

اننوی اولاراق باریت پارتلاییجی ماده کیمی تانینیر. اصلینده ایسه او بئله دئییل. باریتی اوزون مدت ساخلادیقدا او بریزانت پارتلاییجی ماده یه چئوریلیر. بو آتما زامانی سیلاحین لوله یینی زده له یه بیلر.
//////////////
به عبری اواک:
אבק השריפה הוא חומר בעירה שהומצא, ככל הנראה, על ידי הסינים במאה ה-9 (למרות שקיימים אזכורים לשימוש בחומר דמוי אבק שריפה כבר במאה ה-3 לפנה"ס על ידי האלכימאי הסיני מה ג'ון).

כבר במאה ה-10 השתמשו הסינים ברומח אש עבור מטרות צבאיות. במאה ה-13 גילו גם האירופים את הפוטנציאל ההרסני הגלום באבקה והשתמשו בה למטרות צבאיות, תותחים ורובים. המקור להגעת הטכנולוגיה לאירופה ולארצות ערב הוא ככל הנראה באימפריה המונגולית, ששיא פריחתה היה באמצע המאה ה-13, ושטחה כלל חלקים מאירופה ומהמזרח התיכון.

ישנם סוגים שונים ומגוונים של אבקות שריפה. במשפחה זו נכללים חומרים דליקים המשחררים בעת בעירתם אור, חום וגזים.
///////////
به کردی بارود:
Barûd, di sedsela 9'an de li Çînê tê vedîtin. Di ss 13'emîn de li Ewropayê tê bikaranîn. Di ss 16'an de ji hêla kîmyagerên elmanî ve Nîtroglîserîn û Dînamît tê dîtin. Barût ji Kerkûd (S), Azot (N) û Karbon (C) ê pêk tê. Bi bandora agir, basinc, tevger û girnozbûnê pir zû diteqe.
///////////////
به اردو باروت:
بارود، آتش گیر مادے کی ایک قسم ہے جو کہ گندھک، کوئلہ اور پوٹاشیم نائٹریٹ سے مل کر بنتا ہے۔ بارود پوٹاشیم نائٹریٹ اور کوئلہ ملانے سے بھی بن سکتا ہے مگر سلفر کے بغیر اس کی قوت اور توانائی کا اخراج نسبتاً کم ہوتا ہے۔ بارود جلدی جلنے والا مادہ ہوتا ہے اور اس کے جلنے سے گرم گیس کا اخراج ہوتا ہے جو کہ کاربن ڈائی آکسائیڈ، پانی اور نائٹروجن پر مشتمل ہوتی ہے۔ اس کے علاوہ باقی بچ جانے والا مادہ پوٹاشیم سلفائیڈ ہوتا ہے۔[1] بارود کے جلد جلنے اور وسیع مقدار میں حرارت اور گیس کی پیداوار کی وجہ سے اسے ہتھیاروں اور دوسرے آتش گیر مادوں میں استعمال کیا جاتا ہے۔ بارود کے وسیع معنی میں کوئی بھی آتش گیر مادہ لیا جا سکتا ہے۔ جدید ہتھیاروں میں روایتی بارود کا استعمال موقوف کیا جا چکا ہے جو کہ اس مقالے میں بیان کیا گیا ہے۔ اس روایتی بارود کی بجائے ان ہتھیاروں میں دھویں کے بغیر بارودی مواد استعمال میں لایا جا رہا ہے۔ قدیم ہتھیاروں یا کئی ممالک میں اب بھی دستیاب روایتی ہتھیاروں میں یہ بارود اب بھی استعمال کیا جاتا ہے۔
بارود کو درجہ بندی کے لحاظ سے آتش گیر مادہ مانا جاتا ہے، کیونکہ یہ بہت ہی آہستہ ختم ہوتا ہے اور اس کے جلنے کے نتیجے میں نسبتاً کم چمک اور دھماکہ ہوتا ہے۔ گولی کے پچھلے حصے میں استعمال ہونے والا بارود جلنے کے نتیجے میں اتنا دباؤ پیدا کرتا ہے جو گولی کو تیز رفتار سے آگے کی جانب دھکیل سکے۔ اگر بارود کی مقدار یا خاصیت زیادہ ہو تو یہ نہ صرف گولی بلکہ پستول یا طمنچے کی نالی کو تباہ کر سکتا ہے۔ اسی وجہ سے بارود چٹانوں اور پتھروں کو توڑنے کے لیے کم اہمیت والا مادہ ہے جبکہ اسی کے مقابلے میں ٹی این ٹی یا بھاری آتش گیر مادہ اس مقصد کے لیے زیادہ موزوں سمجھا جاتا ہے۔
/////////////
به پنجابی گن پاودر:
گن پاؤڈر سلفر تارکول تے پوٹاشیم نائیٹریٹ دا مکسچر ہوندا اے۔
///////////
به سندی بارود:
بارُود يا باروت پوٽاشيئم نائٽريٽ (75 سيڪڙو)، تيزاب (10 سيڪڙو) ۽ ڪاربان (15 سيڪڙو) ملائڻ سان ٺڪاءُ ڪندڙ مصالحو ٺهندو آهي. اوائل ۾ بارود جي دونهين ۽ رڪ جي چني ڪري هٿيارن کي هر ڀيري صاف ڪرڻو پوندو هو، پر پوء جيئن جيئن ترقي ٿيندي وئي، تيئن تيئن بارود سان رک ۽ دونهين جا اثر ختم ٿيندا ويا.
بارود جي ايجاد کي راجر بيڪن يا برٿولڊ شوارٽز (Berthold Schwarz) ڏانهن منسوب ڪيو ويندو هو، پر نئين تحقيق مطابق بارود جي ايجاد 9 صديءَ ڌاري چين ۾ ٿي. يورپ ۾ هن جو رواج 14 صديءَ ۾ پيو، جنهن کان پوء جنگ جي طريقن ۾ انقلاب اچي ويو. 19 صديءَ ۾ اهڙا بارود ايجاد ٿيا، جيڪي دونهين کان پاڪ هئا. 1864ع ۾ پروشيا (جرمنيءَ) جي توپ خاني واري ڪپتان ايڊورڊ شلٽرز هڪ اهڙو بارود ٺاهيو، جيڪو 1870ع کان پوء شلٽز پائوڊر جي نالي سان مشهور ٿيو. گهڻو ڪري شوري ۽ نباتي ريشن جي جزن مان ٺهيل دونهين کان پاڪ بارود جو غالباً پهريون ڪامياب مثال هو. هي بارود بندوقن، شيلڪي ڪارتوسن ۾، دستي بمن ۽ توپ جي گولن ڇڏڻ لاء استعمال ٿيندو هو. پال ويئيل (Paul Vieille) 1885ع ۾ رائيفلن لاء شوري ۾ تَر ٿيل ڪپهه، ايٿر ۽ الڪوهل جي ميلاپ سان بارود تيار ڪيو، جيڪو بارود ”ب“ (Powder-B) جي نالي سان سڏجڻ لڳو. ائلفرڊ نوبل (Alfred Noble) بعد ۾ ان ۾ بيلٽسائٽ جو اضافو ڪيو ۽ شوري ۾ تر ڪپهه کي شوري ۽ گليسرين جي ڪريم ۾ ماري نئون بارود ٺاهيو. ڪارڊائٽ (Cordite) دونهين کان پاڪ هڪ ٻيو بارود آهي، جيڪو سر ايف. اي ايبل ۽ سر جيمز ڊيوار 1889ع ۾ ايجاد ڪيو. ان ۾ شوري جي وڏي مقدار ۾ تر ٿيل گن ڪاٽن ۽ نائٽرو گليسرين هوندي آهي، جن کي ائسيٽون (Acetone) جي مدد سان گڏايو ويندو آهي. ان کان سواء انڊيورائٽ (Indurate) بارود، سي. اي منرو (Monroe) 1891ع ۾ ايجاد ڪيو. ان کان پوء اڄ تائين بارود وڏي ترقي ڪئي آهي ۽ سڄيءَ دنيا لاء خوف جي علامت بنيل آهي.
//////////////
به اردو بارود:
بارود، آتش گیر مادے کی ایک قسم ہے جو کہ گندھک، کوئلہ اور پوٹاشیم نائٹریٹ سے مل کر بنتا ہے۔ بارود پوٹاشیم نائٹریٹ اور کوئلہ ملانے سے بھی بن سکتا ہے مگر سلفر کے بغیر اس کی قوت اور توانائی کا اخراج نسبتاً کم ہوتا ہے۔ بارود جلدی جلنے والا مادہ ہوتا ہے اور اس کے جلنے سے گرم گیس کا اخراج ہوتا ہے جو کہ کاربن ڈائی آکسائیڈ، پانی اور نائٹروجن پر مشتمل ہوتی ہے۔ اس کے علاوہ باقی بچ جانے والا مادہ پوٹاشیم سلفائیڈ ہوتا ہے۔[1] بارود کے جلد جلنے اور وسیع مقدار میں حرارت اور گیس کی پیداوار کی وجہ سے اسے ہتھیاروں اور دوسرے آتش گیر مادوں میں استعمال کیا جاتا ہے۔ بارود کے وسیع معنی میں کوئی بھی آتش گیر مادہ لیا جا سکتا ہے۔ جدید ہتھیاروں میں روایتی بارود کا استعمال موقوف کیا جا چکا ہے جو کہ اس مقالے میں بیان کیا گیا ہے۔ اس روایتی بارود کی بجائے ان ہتھیاروں میں دھویں کے بغیر بارودی مواد استعمال میں لایا جا رہا ہے۔ قدیم ہتھیاروں یا کئی ممالک میں اب بھی دستیاب روایتی ہتھیاروں میں یہ بارود اب بھی استعمال کیا جاتا ہے۔
بارود کو درجہ بندی کے لحاظ سے آتش گیر مادہ مانا جاتا ہے، کیونکہ یہ بہت ہی آہستہ ختم ہوتا ہے اور اس کے جلنے کے نتیجے میں نسبتاً کم چمک اور دھماکہ ہوتا ہے۔ گولی کے پچھلے حصے میں استعمال ہونے والا بارود جلنے کے نتیجے میں اتنا دباؤ پیدا کرتا ہے جو گولی کو تیز رفتار سے آگے کی جانب دھکیل سکے۔ اگر بارود کی مقدار یا خاصیت زیادہ ہو تو یہ نہ صرف گولی بلکہ پستول یا طمنچے کی نالی کو تباہ کر سکتا ہے۔ اسی وجہ سے بارود چٹانوں اور پتھروں کو توڑنے کے لیے کم اہمیت والا مادہ ہے جبکہ اسی کے مقابلے میں ٹی این ٹی یا بھاری آتش گیر مادہ اس مقصد کے لیے زیادہ موزوں سمجھا جاتا ہے۔
////////////
ب کردی سورانی بارووت:
بارووت ماددەیەکی تەقەمەنییە کە بە ئاسانی دەسووتێت و لە چەکەکاندا بە کار دەبرێت.
//////////
به آذری باریت:
Barıt — çoxkomponentli partlayıcı maddə olub, xaricdən oksigen daxil olmadan daxildən yanma və bununla böyük daxili enerjili qaz yaratmaq qabiliyyətinə malikdir. Barıt mərmilərin atılmasında, raketlərin hərəkət etdirilməsində və başqa məqsədlər üçün istifadə edilir.
/////////
به ترکی باروت:
Barutenerjiyi biriktirmek, taşımak ve harekete geçirmek için kullanılan ilk teknolojilerden biridir.

////////

Gunpowder

From Wikipedia, the free encyclopedia
For other uses, see Gunpowder (disambiguation).
In American English, the term gunpowder also refers broadly to any gun propellant.[1] Gunpowder (black powder) is not normally used in modern firearms, which instead use smokeless powders.
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Black_Powder_Close_Up.jpg/220px-Black_Powder_Close_Up.jpg
Black powder for muzzleloadingrifles and pistols in FFFG granulation size. U.S. Quarter (diameter 24 mm) for comparison.
Gunpowder, also known as black powder, is the earliest known chemicalexplosive. It is a mixture of sulfurcharcoal, and potassium nitrate (saltpeter). The sulfur and charcoal act as fuels, and the saltpeter is an oxidizer.[2][3] Because of its burning properties and the amount of heat and gas volume that it generates, gunpowder has been widely used as a propellant in firearms and as a pyrotechnic composition in fireworks. Formulations used in blasting rock (such as in quarrying) are called blasting powder. Gunpowder is mainly used in older guns now because the propellants used today are too powerful and could break the already fragile barrels.
Gunpowder was invented in the 9th century in China,[4][5] and the earliest record of a written formula for gunpowder appears in the 11th century Song dynasty text,Wujing Zongyao.[6] This discovery led to the invention of fireworks and the earliest gunpowder weapons in China. In the centuries following the Chinese discovery, gunpowder weapons began appearing in the Muslim world, Europe, and India. The technology spread from China through the Middle East or Central Asia, and then into Europe.[7] The earliest Western accounts of gunpowder appear in texts written by English philosopher Roger Bacon in the 13th century.[8]
Gunpowder is assigned the UN number UN0027 and has a hazard class of 1.1D. It has a flash point of approximately 427–464 °C (801–867 °F). The specific flash point may vary based on the specific composition of the gunpowder. Gunpowder's specific gravity is 1.70–1.82 (mercury method) or 1.92–2.08 (pycnometer), and it has a pH of 6.0–8.0.[9]
Gunpowder is classified as a low explosive because of its relatively slow decomposition rate and consequently lowbrisance. Low explosives deflagrate (i.e., burn) at subsonic speeds, whereas high explosives detonate, producing a supersonic wave. Gunpowder is, however, capable of detonation if it is provided by an external source (similarly to flash powder), such as a detonator, although the detonation velocity is much slower than that of high explosives. Gunpowder's burning rate increases with pressure, so it will burst containers but just burns in the open. Ignition of the powder packed behind a bullet must generate enough pressure to force it from the muzzle at high speed, but not enough to rupture thegun barrel. Gunpowder thus makes a good propellant, but is less suitable for shattering rock or fortifications. Gunpowder was widely used to fill artillery shells and in mining and civil engineering to blast rock until the second half of the 19th century, when the first high explosives were put into use. Gunpowder is no longer used in modern explosive military warheads, nor is it used as main explosive in mining operations due to its cost relative to that of newer alternatives such as ammonium nitrate/fuel oil (ANFO).[10] Black powder is still used as a delay element in various munitions where its slow-burning properties are valuable.
Contents
  [hide
·         1History of gunpowder
o    1.1China
o    1.5India
o    1.6Indonesia
·         2Manufacturing technology
·         4Serpentine
·         5Corning
·         6Modern types
·         7Other types of gunpowder
·         8Sulfur-free gunpowder
·         9Combustion characteristics
o    9.1Advantages
·         10Other uses
·         11See also
·         12References
·         13External links
History of gunpowder[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Chinese_rocket.png/300px-Chinese_rocket.png
Early Chinese rocket
https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/M%C5%8Dko_Sh%C5%ABrai_Ekotoba.jpg/300px-M%C5%8Dko_Sh%C5%ABrai_Ekotoba.jpg
A Mongol bomb thrown against a chargingJapanese samurai during the Mongol invasions of Japan after founding the Yuan Dynasty, 1281.
Main article: History of gunpowder
The mainstream scholarly consensus is that gunpowder was invented in China, spread through the Middle East, and then into Europe,[7] although there is a dispute over how much the Chinese advancements in gunpowder warfare influenced later advancements in the Middle East and Europe.[11][12] The spread of gunpowder across Asia from China is widely attributed to the Mongols. One of the first examples of Europeans encountering gunpowder and firearms is at the Battle of Mohi in 1241. At this battle the Mongols not only used gunpowder in early Chinese firearms but in the earliest grenades as well.
A major problem confronting the study of the early history of gunpowder is ready access to sources close to the events described. Often enough, the first records potentially describing use of gunpowder in warfare were written several centuries after the fact, and may well have been colored by the contemporary experiences of the chronicler.[13] It is also difficult to accurately translate original alchemy texts, especially medieval Chinese texts that try to explain phenomena through metaphor, into modern scientific language with rigidly defined terminology. The translation difficulty has led to errors or loose interpretations bordering on artistic licence.[14][15] Early writings potentially mentioning gunpowder are sometimes marked by a linguistic process where old words acquired new meanings.[16] For instance, the Arabic word naft transitioned from denoting naphtha to denoting gunpowder, and the Chinese word pào evolved from meaning catapult to referring to cannon.[17] According to science and technology historianBert S. Hall: "It goes without saying, however, that historians bent on special pleading, or simply with axes of their own to grind, can find rich material in these terminological thickets."[18]
China[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Yuan_chinese_gun.jpg/220px-Yuan_chinese_gun.jpg
Yuan Dynasty hand cannon dated to 1288.
https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/Ming_matchlocks.jpg/250px-Ming_matchlocks.jpg
Chinese Ming Dynasty (1368-1644)matchlock firearms
Saltpeter was known to the Chinese by the mid-1st century AD and there is strong evidence of the use of saltpeter and sulfur in various largelymedicinal combinations.[19] A Chinese alchemical text dated 492 noted saltpeter burnt with a purple flame, providing a practical and reliable means of distinguishing it from other inorganic salts, thus enabling alchemists to evaluate and compare purification techniques; the earliest Latin accounts of saltpeter purification are dated after 1200.[20]
https://upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Bronze_cannon_of_1332.jpg/220px-Bronze_cannon_of_1332.jpg
Yuan Dynasty bronze hand cannon from 1332 at th (c. 808); it describes mixing six parts sulfur to six parts saltpeter to one part birthwort herb (which would provide carbon).[21]
The first reference to the incendiary properties of such mixtures is the passage of the Zhenyuan miaodao yaolüe, a Taoist text tentatively dated to the mid-9th century:[20] "Some have heated together sulfur, realgar and saltpeter with honey; smoke and flames result, so that their hands and faces have been burnt, and even the whole house where they were working burned down."[22] The Chinese word for "gunpowder" is Chinese/火藥pinyinhuŏ yào /xuou yɑʊ/, which literally means "Fire Medicine";[23] however this name only came into use some centuries after the mixture's discovery.[24] During the 9th century, Taoist monks oralchemists searching for an elixir of immortality had serendipitously stumbled upon gunpowder.[7][25] The Chinese wasted little time in applying gunpowder to the development of weapons, and in the centuries that followed, they produced a variety of gunpowder weapons, including flamethrowers, rockets, bombs, and land mines, before inventing guns as a projectile weapon.[26] Archaeological evidence of a hand cannon has been excavated in Manchuria dated from the late 13th century[27] and the shells of explosive bombs have been discovered in a shipwreck off the shore of Japan dated from 1281, during the Mongol invasions of Japan.[28]
The Chinese "Wu Ching Tsung Yao" (Complete Essentials from the Military Classics), written by Tseng Kung-Liang between 1040–1044, provides encyclopedia references to a variety of mixtures that included petrochemicals—as well as garlic and honey. A slow match for flame throwing mechanisms using the siphon principle and for fireworks and rockets is mentioned. The mixture formulas in this book do not contain enough saltpeter to create an explosive however; being limited to at most 50% saltpeter, they produce an incendiary.[29] The Essentials was however written by a Song dynastycourt bureaucrat, and there is little evidence that it had any immediate impact on warfare; there is no mention of gunpowder use in the chronicles of the wars against the Tanguts in the 11th century, and China was otherwise mostly at peace during this century. The first chronicled use of "fire spears" (or "fire lances") is at the siege of De'an in 1132.[30]
·         Formula for gunpowder in 1044 Wujing zongyaopart I vol 12

·         Instruction for fire bomb in Wujing zongyao

·         Fire bomb

·         Fire grenade

·         https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Ming_Dynasty_eruptor_proto-cannon.jpg/120px-Ming_Dynasty_eruptor_proto-cannon.jpg
Proto-cannon from the Ming Dynasty textHuolongjing

·         https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Self-tripped_trespass_land_mine%2C_Huolongjing.jpg/120px-Self-tripped_trespass_land_mine%2C_Huolongjing.jpg
Land mine from the Ming Dynasty text Huolongjing

·         https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/11th_century_long_serpent_fire_arrow_rocket_launcher.jpg/120px-11th_century_long_serpent_fire_arrow_rocket_launcher.jpg
Fire arrow rocket launcher from the Wujing zongyao
Middle East[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Dardanelles_Gun_Turkish_Bronze_15c.png/230px-Dardanelles_Gun_Turkish_Bronze_15c.png
The Sultani Cannon, a very heavy bronze breech-loading cannon of type used by Ottoman Empire in theconquest of Constantinople, in 1453.
The Muslims acquired knowledge of gunpowder some time between 1240 and 1280, by which time the Syrian Hasan al-Rammah had written, in Arabic, recipes for gunpowder, instructions for the purification of saltpeter, and descriptions of gunpowder incendiaries. Gunpowder arrived in the Middle East, possibly through India, from China. This is implied by al-Rammah's usage of "terms that suggested he derived his knowledge from Chinese sources" and his references to saltpeter as "Chinese snow" (Arabicثلج الصين‎‎ thalj al-ṣīn), fireworks as "Chinese flowers" and rockets as "Chinese arrows".[31] However, because al-Rammah attributes his material to "his father and forefathers", al-Hassan argues that gunpowder became prevalent in Syria and Egypt by "the end of the twelfth century or the beginning of the thirteenth".[32] Persians called saltpeter "Chinese salt" (Persianنمک چینی‎‎namak-i chīnī)[33][34][35][36][37] or "salt from Chinese salt marshes" (نمک شوره چینی namak-i shūra-yi chīnī).[38][39]
https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/Ibn_Ghanims_gun.jpg/200px-Ibn_Ghanims_gun.jpg
A picture of a 15th-centuryGranadian cannon from the bookAl-izz wal rifa'a.
Al-Hassan claims that in the Battle of Ain Jalut of 1260, the Mamluks used against the Mongols in "the first cannon in history" gunpowder formula with near-identical ideal composition ratios for explosive gunpowder.[32] Other historians urge caution regarding claims of Islamic firearms use in the 1204-1324 period as late medieval Arabic texts used the same word for gunpowder, naft, that they used for an earlier incendiary, naphtha.[13][17] Khan claims that it was invading Mongols who introduced gunpowder to the Islamic world[40] and cites Mamluk antagonism towards early musketeers in their infantry as an example of how gunpowder weapons were not always met with open acceptance in the Middle East.[41] Similarly, the refusal of theirQizilbash forces to use firearms contributed to the Safavid rout at Chaldiran in 1514.[41]
https://upload.wikimedia.org/wikipedia/commons/thumb/9/93/Barout_khaneh_near_Tehran_by_Eug%C3%A8ne_Flandin.jpg/220px-Barout_khaneh_near_Tehran_by_Eug%C3%A8ne_Flandin.jpg
1840 drawing of a gunpowder magazine near TehranPersia. Gunpowder was extensively used in the Naderian Wars.
The earliest surviving documentary evidence for the use of the hand cannon, considered the oldest type of portable firearm and a forerunner of the handgun, are from several Arabic manuscripts dated to the 14th century.[42] Al-Hassan argues that these are based on earlier originals and that they report hand-held cannons being used by the Mamluks at the Battle of Ain Jalut in 1260.[32]
Hasan al-Rammah included 107 gunpowder recipes in his text al-Furusiyyah wa al-Manasib al-Harbiyya (The Book of Military Horsemanship and Ingenious War Devices), 22 of which are for rockets. If one takes the median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulfur, and 15.94% charcoal), it is nearly identical to the modern reported ideal gunpowder recipe of 75% potassium nitrate, 10% sulfur, and 15% charcoal.[32]
The state-controlled manufacture of gunpowder by the Ottoman Empire through early supply chains to obtain nitre, sulfur and high-quality charcoal from oaks in Anatolia contributed significantly to its expansion between the 15th and 18th century. It was not until later in the 19th century when the syndicalist production of Turkish gunpowder was greatly reduced, which coincided with the decline of its military might.[43]
Mainland Europe[edit]
Several sources mention Chinese firearms and gunpowder weapons being deployed by the Mongols against European forces at the Battle of Mohi in 1241.[44][45][46] Professor Kenneth Warren Chase credits the Mongols for introducing into Europe gunpowder and its associated weaponry.[47]
C. F. Temler interprets Peter, Bishop of Leon, as reporting the use of cannons in Seville in 1248.[48]
In Europe, one of the first mentions of gunpowder use appears in a passage found in Roger Bacon's Opus Maius andOpus Tertium in what has been interpreted as being firecrackers. The most telling passage reads: "We have an example of these things (that act on the senses) in [the sound and fire of] that children's toy which is made in many [diverse] parts of the world; i.e., a device no bigger than one's thumb. From the violence of that salt called saltpeter [together with sulfur and willow charcoal, combined into a powder] so horrible a sound is made by the bursting of a thing so small, no more than a bit of parchment [containing it], that we find [the ear assaulted by a noise] exceeding the roar of strong thunder, and a flash brighter than the most brilliant lightning."[8] In the early 20th century, British artillery officer Henry William Lovett Hime proposed that another work tentatively attributed to BaconEpistola de Secretis Operibus Artis et Naturae, et de Nullitate Magiae contained an encrypted formula for gunpowder. This claim has been disputed by historians of science including Lynn ThorndikeJohn Maxson Stillman and George Sarton and by Bacon's editor Robert Steele, both in terms of authenticity of the work, and with respect to the decryption method.[8] In any case, the formula claimed to have been decrypted (7:5:5 saltpeter:charcoal:sulfur) is not useful for firearms use or even firecrackers, burning slowly and producing mostly smoke.[49][50]
https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Fortin_La_Galera_01.jpg/220px-Fortin_La_Galera_01.jpg
Cannon forged in 1667 at the Fortín de La Galera, Nueva Esparta, Venezuela.
The Liber Ignium, or Book of Fires, attributed to Marcus Graecus, is a collection of incendiary recipes, including some gunpowder recipes. Partington dates the gunpowder recipes to approximately 1300.[51] One recipe for "flying fire" (ingis volatilis) involves saltpeter, sulfur, and colophonium, which, when inserted into a reed or hollow wood, "flies away suddenly and burns up everything." Another recipe, for artificial "thunder", specifies a mixture of one pound native sulfur, two pounds linden or willow charcoal, and six pounds of saltpeter.[52] Another specifies a 1:3:9 ratio.[52]
Some of the gunpowder recipes of De Mirabilibus Mundi of Albertus Magnus are identical to the recipes of the Liber Ignium, and according to Partington, "may have been taken from that work, rather than conversely."[53] Partington suggests that some of the book may have been compiled by Albert's students, "but since it is found in thirteenth century manuscripts, it may well be by Albert."[53] Albertus Magnus died in 1280.
A common German folk-tale is of the German priest/monk named Berthold Schwarz who independently invented gunpowder, thus earning it the German name Schwarzpulver or in English Schwarz's powder.
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/B%C3%BCchsenmeysterei_1531_CHF.jpg/220px-B%C3%BCchsenmeysterei_1531_CHF.jpg
Büchsenmeysterei : von Geschoß, Büchsen, Pulver, Salpeter und Feurwergken, 1531
https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/De_la_pirotechnia_1540_Title_Page_AQ1_%281%29.jpg/220px-De_la_pirotechnia_1540_Title_Page_AQ1_%281%29.jpg
De la pirotechnia, 1540
A major advance in manufacturing began in Europe in the late 14th century when the safety and thoroughness of incorporation was improved by wet grinding; liquid, such as distilled spirits or perhaps the urine of wine-drinking bishops[54]was added during the grinding-together of the ingredients and the moist paste dried afterwards. (The principle of wet mixing to prevent the separation of dry ingredients, invented for gunpowder, is used today in the pharmaceutical industry.[55]) It was also discovered that if the paste was rolled into balls before drying the resulting gunpowder absorbed less water from the air during storage and traveled better. The balls were then crushed in a mortar by the gunner immediately before use, with the old problem of uneven particle size and packing causing unpredictable results.
If the right size particles were chosen, however, the result was a great improvement in power. Forming the damp paste into corn-sized clumps by hand or with the use of a sieve instead of larger balls produced a product after drying that loaded much better, as each tiny piece provided its own surrounding air space that allowed much more rapid combustion than a fine powder. This "corned" gunpowder was from 30% to 300% more powerful. An example is cited where 34 pounds of serpentine was needed to shoot a 47-pound ball, but only 18 pounds of corned powder.[54] The optimum size of the grain depended on its use; larger for large cannon, finer for small arms. Larger cast cannons were easily muzzle-loaded with corned powder using a long-handled ladle. Corned powder also retained the advantage of low moisture absorption, as even tiny grains still had much less surface area to attract water than a floury powder.
During this time, European manufacturers also began regularly purifying saltpeter, using wood ashes containing potassium carbonate to precipitate calcium from their dung liquor, and using ox blood, alum, and slices of turnip to clarify the solution.[54]
Gunpowder-making and metal-smelting and casting for shot and cannon fee was closely held by skilled military tradesmen, who formed guilds that collected dues, tested apprentices, and gave pensions. "Fire workers" were also required to craft fireworks for celebrations of victory or peace.
During the Renaissance, two European schools of pyrotechnic thought emerged, one in Italy and the other at Nuremberg, Germany. The German printer and publisher Christiaan Egenolff adapted an earlier work on pyrotechnics from manuscript to print form, publishing his Büchsenmeysterei in 1529 and reprinting it in 1531. Now extremely rare, the book discusses the manufacturing of gunpowder, the operation of artillery and the rules of conduct for the gunsmith.[56]
In Italy, Vannoccio Biringuccio, born in 1480, was a member of the guild Fraternita di Santa Barbara but broke with the tradition of secrecy by setting down everything he knew in a book titled De la pirotechnia, written in vernacular. It was published posthumously in 1540, with 9 editions over 138 years, and also reprinted by MIT Press in 1966.[54]
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/J._C._St%C3%B6vesandt_1748_Deutliche_Anweisung_zur_Feuerwerkerey.jpg/220px-J._C._St%C3%B6vesandt_1748_Deutliche_Anweisung_zur_Feuerwerkerey.jpg
Deutliche Anweisung zur Feuerwerkerey, 1748
By the mid-17th century fireworks were used for entertainment on an unprecedented scale in Europe, being popular even at resorts and public gardens.[57] With the publication of Deutliche Anweisung zur Feuerwerkerey(1748), methods for creating fireworks were sufficiently well-known and well-described that "Firework making has become an exact science."[58] In 1774 Louis XVI ascended to the throne of France at age 20. After he discovered that France was not self-sufficient in gunpowder, a Gunpowder Administration was established; to head it, the lawyer Antoine Lavoisier was appointed. Although from a bourgeois family, after his degree in law Lavoisier became wealthy from a company set up to collect taxes for the Crown; this allowed him to pursue experimental natural science as a hobby.[59]
Without access to cheap Indian saltpeter (controlled by the British), for hundreds of years France had relied on saltpetermen with royal warrants, the droit de fouilleor "right to dig", to seize nitrous-containing soil and demolish walls of barnyards, without compensation to the owners.[60] This caused farmers, the wealthy, or entire villages to bribe the petermen and the associated bureaucracy to leave their buildings alone and the saltpeter uncollected. Lavoisier instituted a crash program to increase saltpeter production, revised (and later eliminated) the droit de fouille, researched best refining and powder manufacturing methods, instituted management and record-keeping, and established pricing that encouraged private investment in works. Although saltpeter from new Prussian-style putrefaction works had not been produced yet (the process taking about 18 months), in only a year France had gunpowder to export. A chief beneficiary of this surplus was the American Revolution. By careful testing and adjusting the proportions and grinding time, powder from mills such as at Essonne outside Paris became the best in the world by 1788, and inexpensive.[60][61]
Britain and Ireland[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Irvinepowderhouse2.JPG/220px-Irvinepowderhouse2.JPG
The old Powder or Pouther magazine dating from 1642, built by order of Charles IIrvineNorth Ayrshire, Scotland
Gunpowder production in Britain appears to have started in the mid 14th century with the aim of supplying the English Crown.[62] Records show that, in England, gunpowder was being made in 1346 at the Tower of London; a powder house existed at the Tower in 1461; and in 1515 three King's gunpowder makers worked there.[62] Gunpowder was also being made or stored at other Royal castles, such as Portchester. By the early 14th century, according to N.J.G. Pounds's study The Medieval Castle in England and Wales, many English castles had been deserted and others were crumbling. Their military significance faded except on the borders. Gunpowder had made smaller castles useless.[63]
Henry VIII of England was short of gunpowder when he invaded France in 1544 and England needed to import gunpowder via the port of Antwerp in what is now Belgium.[62]
The English Civil War (1642–1645) led to an expansion of the gunpowder industry, with the repeal of the Royal Patent in August 1641.[62]
Two British physicists, Andrew Noble and Frederick Abel, worked to improve the properties of black powder during the late 19th century. This formed the basis for the Noble-Abel gas equation for internal ballistics.[64]
The introduction of smokeless powder in the late 19th century led to a contraction of the gunpowder industry. After the end of World War I, the majority of the United Kingdom gunpowder manufacturers merged into a single company, "Explosives Trades limited"; and number of sites were closed down, including those in Ireland. This company became Nobel Industries Limited; and in 1926 became a founding member of Imperial Chemical Industries. The Home Office removed gunpowder from its list of Permitted Explosives; and shortly afterwards, on 31 December 1931, the former Curtis & Harvey'sGlynneath gunpowder factory at Pontneddfechan, in Wales, closed down, and it was demolished by fire in 1932.[65]
https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Martello_Tower_barrels.jpg/170px-Martello_Tower_barrels.jpg
Gunpowder storing barrels at Martello tower in Point Pleasant Park
The last remaining gunpowder mill at the Royal Gunpowder Factory, Waltham Abbey was damaged by a German parachute mine in 1941 and it never reopened.[66] This was followed by the closure of the gunpowder section at the Royal Ordnance FactoryROF Chorley, the section was closed and demolished at the end of World War II; and ICI Nobel's Roslin gunpowder factory, which closed in 1954.[66][67]
This left the sole United Kingdom gunpowder factory at ICI Nobel's Ardeer site inScotland; it too closed in October 1976.[66] Since then gunpowder has been imported into the United Kingdom. In the late 1970s/early 1980s gunpowder was bought from eastern Europe, particularly from what was then the German Democratic Republic and formerYugoslavia.
India[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Rocket_warfare.jpg/220px-Rocket_warfare.jpg
In the year 1780 the British began to annex the territories of the Sultanate of Mysore, during the Second Anglo-Mysore War. The British battalion was defeated during the Battle of Guntur, by the forces of Hyder Ali, who effectively utilized Mysorean rocketsand rocket artillery against the closely massed British forces.
https://upload.wikimedia.org/wikipedia/commons/thumb/9/93/Meister_der_Sh%C3%A2h-Jah%C3%A2n-N%C3%A2ma-Memoiren_001.jpg/200px-Meister_der_Sh%C3%A2h-Jah%C3%A2n-N%C3%A2ma-Memoiren_001.jpg
Mughal Emperor Shah Jahan, hunting deer using a matchlock as the sun sets in the horizon.
Gunpowder and gunpowder weapons were transmitted to India through the Mongol invasions of India.[68][69] The Mongols were defeated by Alauddin Khilji of the Delhi Sultanate, and some of the Mongol soldiers remained in northern India after their conversion to Islam.[69] It was written in theTarikh-i Firishta (1606–1607) that Nasir ud din Mahmud the ruler of the Delhi Sultanate presented the envoy of the Mongol rulerHulegu Khan with a dazzling pyrotechnics display upon his arrival in Delhi in 1258. Nasir ud din Mahmud tried to express his strength as a ruler and tried to ward off anyMongol attempt similar to the Siege of Baghdad (1258).[70] Firearms known as top-o-tufak also existed in many Muslim kingdoms in India by as early as 1366.[70] From then on the employment ofgunpowder warfare in India was prevalent, with events such as the "Siege ofBelgaum" in 1473 by Sultan Muhammad Shah Bahmani.[71]
The shipwrecked Ottoman Admiral Seydi Ali Reis is known to have introduced the earliest type of matchlock weapons, which the Ottomans used against the Portuguese during the Siege of Diu (1531). After that, a diverse variety of firearms, large guns in particular, became visible in TanjoreDaccaBijapur, and Murshidabad.[72] Guns made of bronze were recovered from Calicut (1504)- the former capital of the Zamorins[73]
The Mughal emperor Akbar mass-produced matchlocks for the Mughal Army. Akbar is personally known to have shot a leading Rajput commander during the Siege of Chittorgarh.[74] The Mughals began to use bamboo rockets (mainly for signalling) and employ sappers: special units that undermined heavy stone fortifications to plant gunpowder charges.
The Mughal Emperor Shah Jahan is known to have introduced much more advanced matchlocks, their designs were a combination of Ottoman and Mughal designs. Shah Jahan also countered the British and other Europeans in his province of Gujarāt, which supplied Europe saltpeter for use in gunpowder warfare during the 17th century.[75] Bengal and Mālwaparticipated in saltpeter production.[75] The Dutch, French, Portuguese, and English used Chhapra as a center of saltpeter refining.[75]
Ever since the founding of the Sultanate of Mysore by Hyder Ali, French military officers were employed to train the Mysore Army. Hyder Ali and his son Tipu Sultan were the first to introduce modern cannons and muskets, their army was also the first in India to have official uniforms. During the Second Anglo-Mysore War Hyder Ali and his son Tipu Sultanunleashed the Mysorean rockets at their British opponents effectively defeating them on various occasions. The Mysorean rockets inspired the development of the Congreve rocket, which the British widely utilized during the Napoleonic Wars and the War of 1812.[76]
Indonesia[edit]
The Javanese Majapahit Empire was arguably able to encompass much of modern-day Indonesia due to its unique mastery of bronze smithing and use of a central arsenal fed by a large number of cottage industries within the immediate region. Documentary and archeological evidence indicate that Arab or Indian traders introduced gunpowder, gonnes,musketsblunderbusses, and cannons to the Javanese, Acehnese, and Batak via long established commercial trade routes around the early to mid 14th century.[77] Portuguese and Spanish invaders were unpleasantly surprised and even outgunned on occasion.[78] The resurgent Singhasari Empire overtook Sriwijaya and later emerged as the Majapahit whose warfare featured the use of fire-arms and cannonade.[79] Circa 1540, the Javanese, always alert for new weapons found the newly arrived Portuguese weaponry superior to that of the locally made variants. Javanese bronze breech-loaded swivel-guns, known as meriam, or erroneously as lantaka, was used widely by the Majapahit navy as well as by pirates and rival lords. The demise of the Majapahit empire and the dispersal of disaffected skilled bronze cannon-smiths to Brunei, modern SumatraMalaysia and the Philippines lead to widespread use, especially in the Makassar Strait.
Saltpeter harvesting was recorded by Dutch and German travelers as being common in even the smallest villages and was collected from the decomposition process of large dung hills specifically piled for the purpose. The Dutch punishment for possession of non-permitted gunpowder appears to have been amputation.[80] Ownership and manufacture of gunpowder was later prohibited by the colonial Dutch occupiers.[77] According to a colonel McKenzie quoted in SirThomas Stamford RafflesThe History of Java (1817), the purest sulfur was supplied from a crater from a mountain near the straits of Bali.[79]
Manufacturing technology[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Hagley_Mill_Equipment.jpg/250px-Hagley_Mill_Equipment.jpg
Edge-runner mill in a restored mill, atEleutherian Mills
For the most powerful black powder, meal powder, a wood charcoal is used. The best wood for the purpose is Pacific willow,[81] but others such as alderor buckthorn can be used. In Great Britain between the 15th and 19th centuries charcoal from alder buckthorn was greatly prized for gunpowder manufacture; cottonwood was used by the American Confederate States.[82]The ingredients are reduced in particle size and mixed as intimately as possible. Originally this was with a mortar-and-pestle or a similarly operating stamping-mill, using copper, bronze or other non-sparking materials, until supplanted by the rotating ball mill principle with non-sparking bronze orlead. Historically, a marble or limestone edge runner mill, running on a limestone bed, was used in Great Britain; however, by the mid 19th century this had changed to either an iron-shod stone wheel or a cast iron wheel running on an iron bed.[83] The mix was dampened with alcohol or water during grinding to prevent accidental ignition. This also helps the extremely soluble saltpeter to mix into the microscopic nooks and crannies of the very high surface-area charcoal.
Around the late 14th century, European powdermakers first began adding liquid during grinding to improve mixing, reduce dust, and with it the risk of explosion.[84] The powder-makers would then shape the resulting paste of dampened gunpowder, known as mill cake, into corns, or grains, to dry. Not only did corned powder keep better because of its reduced surface area, gunners also found that it was more powerful and easier to load into guns. Before long, powder-makers standardized the process by forcing mill cake through sieves instead of corning powder by hand.
The improvement was based on reducing the surface area of a higher density composition. At the beginning of the 19th century, makers increased density further by static pressing. They shoveled damp mill cake into a two-foot square box, placed this beneath a screw press and reduced it to 1/2 its volume. "Presscake" had the hardness of slate. They broke the dried slabs with hammers or rollers, and sorted the granules with sieves into different grades. In the United States,Eleuthere Irenee du Pont, who had learned the trade from Lavoisier, tumbled the dried grains in rotating barrels to round the edges and increase durability during shipping and handling. (Sharp grains rounded off in transport, producing fine "meal dust" that changed the burning properties.)
Another advance was the manufacture of kiln charcoal by distilling wood in heated iron retorts instead of burning it in earthen pits. Controlling the temperature influenced the power and consistency of the finished gunpowder. In 1863, in response to high prices for Indian saltpeter, DuPont chemists developed a process using potash or mined potassium chloride to convert plentiful Chilean sodium nitrate to potassium nitrate.[85]
The following year (1864) the Gatebeck Low Gunpowder Works in Cumbria (Great Britain) started a plant to manufacture potassium nitrate by essentially the same chemical process.[86] This is nowadays called the ‘Wakefield Process’, after the owners of the company. It would have used potassium chloride from the Staßfurt mines, near Magdeburg, Germany, which had recently become available in industrial quantities.[87]
During the 18th century, gunpowder factories became increasingly dependent on mechanical energy.[88] Despite mechanization, production difficulties related to humidity control, especially during the pressing, were still present in the late 19th century. A paper from 1885 laments that "Gunpowder is such a nervous and sensitive spirit, that in almost every process of manufacture it changes under our hands as the weather changes." Pressing times to the desired density could vary by a factor of three depending on the atmospheric humidity.[89]
Composition and characteristics[edit]
The term black powder was coined in the late 19th century, primarily in the United States, to distinguish prior gunpowder formulations from the new smokeless powders and semi-smokeless powders, in cases where these are not referred to ascordite. Semi-smokeless powders featured bulk volume properties that approximated black powder, but had significantly reduced amounts of smoke and combustion products. Smokeless powder has different burning properties (pressure vs. time) and can generate higher pressures and work per gram. This can rupture older weapons designed for black powder. Smokeless powders ranged in color from brownish tan to yellow to white. Most of the bulk semi-smokeless powders ceased to be manufactured in the 1920s.[90][91][92]
Black powder is a granular mixture of
·         nitrate, typically potassium nitrate (KNO3), which supplies oxygen for the reaction;
·         charcoal, which provides carbon and other fuel for the reaction, simplified as carbon (C);
·         sulfur (S), which, while also serving as a fuel, lowers the temperature required to ignite the mixture, thereby increasing the rate of combustion.
Potassium nitrate is the most important ingredient in terms of both bulk and function because the combustion process releases oxygen from the potassium nitrate, promoting the rapid burning of the other ingredients.[93] To reduce the likelihood of accidental ignition by static electricity, the granules of modern black powder are typically coated with graphite, which prevents the build-up of electrostatic charge.
Charcoal does not consist of pure carbon; rather, it consists of partially pyrolyzed cellulose, in which the wood is not completely decomposed. Carbon differs from ordinary charcoal. Whereas charcoal's autoignition temperature is relatively low, carbon's is much greater. Thus, a black powder composition containing pure carbon would burn similarly to a match head, at best.[94]
The current standard composition for the black powders that are manufactured by pyrotechnicians was adopted as long ago as 1780. Proportions by weight are 75% potassium nitrate (known as saltpeter or saltpetre), 15% softwood charcoal, and 10% sulfur.[83] These ratios have varied over the centuries and by country, and can be altered somewhat depending on the purpose of the powder. For instance, power grades of black powder, unsuitable for use in firearms but adequate for blasting rock in quarrying operations, are called blasting powder rather than gunpowder with standard proportions of 70% nitrate, 14% charcoal, and 16% sulfur; blasting powder may be made with the cheaper sodium nitrate substituted for potassium nitrate and proportions may be as low as 40% nitrate, 30% charcoal, and 30% sulfur.[95] In 1857, Lammot du Pont solved the main problem of using cheaper sodium nitrate formulations when he patented DuPont "B" blasting powder. After manufacturing grains from press-cake in the usual way, his process tumbled the powder with graphite dust for 12 hours. This formed a graphite coating on each grain that reduced its ability to absorb moisture.[96]
Neither the use of graphite nor sodium nitrate was new. Glossing gunpowder corns with graphite was already an accepted technique in 1839,[97] and sodium nitrate-based blasting powder had been made in Peru for many years using the sodium nitrate mined at Tarapacá (now in Chile).[98] Also, in 1846, two plants were built in south-west England to make blasting powder using this sodium nitrate.[99] The idea may well have been brought from Peru by Cornish miners returning home after completing their contracts. Another suggestion is that it was William Lobb, the planthunter, who recognised the possibilities of sodium nitrate during his travels in South America.[100] Lammot du Pont would have known about the use of graphite and probably also knew about the plants in south-west England. In his patent he was careful to state that his claim was for the combination of graphite with sodium nitrate-based powder, rather than for either of the two individual technologies.
French war powder in 1879 used the ratio 75% saltpeter, 12.5% charcoal, 12.5% sulfur. English war powder in 1879 used the ratio 75% saltpeter, 15% charcoal, 10% sulfur.[101] The British Congreve rockets used 62.4% saltpeter, 23.2% charcoal and 14.4% sulfur, but the British Mark VII gunpowder was changed to 65% saltpeter, 20% charcoal and 15% sulfur.[102] The explanation for the wide variety in formulation relates to usage. Powder used for rocketry can use a slower burn rate since it accelerates the projectile for a much longer time—whereas powders for weapons such as flintlocks, cap-locks, or matchlocks need a higher burn rate to accelerate the projectile in a much shorter distance. Cannons usually used lower burn rate powders, because most would burst with higher burn rate powders.
Serpentine[edit]
The original dry-compounded powder used in 15th-century Europe was known as "Serpentine", either a reference to Satan[103] or to a common artillery piece that used it.[104] The ingredients were ground together with a mortar and pestle, perhaps for 24 hours,[104] resulting in a fine flour. Vibration during transportation could cause the components to separate again, requiring remixing in the field. Also if the quality of the saltpeter was low (for instance if it was contaminated with highly hygroscopic calcium nitrate), or if the powder was simply old (due to the mildly hygroscopic nature of potassium nitrate), in humid weather it would need to be re-dried. The dust from "repairing" powder in the field was a major hazard.
Loading cannons or bombards before the powder-making advances of the Renaissance was a skilled art. Fine powder loaded haphazardly or too tightly would burn incompletely or too slowly. Typically, the breech-loading powder chamber in the rear of the piece was filled only about half full, the serpentine powder neither too compressed nor too loose, a wooden bung pounded in to seal the chamber from the barrel when assembled, and the projectile placed on. A carefully determined empty space was necessary for the charge to burn effectively. When the cannon was fired through the touchhole, turbulence from the initial surface combustion caused the rest of the powder to be rapidly exposed to the flame.[104]
The advent of much more powerful and easy to use corned powder changed this procedure, but serpentine was used with older guns into the 17th century.[105]
Corning[edit]
For gunpowder to explode effectively, the combustible ingredients must be reduced to the smallest possible particle sizes, and be as thoroughly mixed as possible. Once mixed, however, for better results in a gun, makers discovered that the final product should be in the form of individual dense grains that spread the fire quickly from grain to grain, much as straw ortwigs catch fire more quickly than a pile of sawdust.
Primarily for safety reasons, size reduction and mixing is done while the ingredients are damp, usually with water. After 1800, instead of forming grains by hand or with sieves, the damp mill-cake was pressed in molds to increase its density and extract the liquid, forming press-cake. The pressing took varying amounts of time, depending on conditions such as atmospheric humidity. The hard, dense product was broken again into tiny pieces, which were separated with sieves to produce a uniform product for each purpose: coarse powders for cannons, finer grained powders for muskets, and the finest for small hand guns and priming.[105] Inappropriately fine-grained powder often caused cannons to burst before the projectile could move down the barrel, due to the high initial spike in pressure.[106] Mammoth powder with large grains, made for Rodman's 15-inch cannon, reduced the pressure to only 20 percent as high as ordinary cannon powder would have produced.[107]
In the mid-19th century, measurements were made determining that the burning rate within a grain of black powder (or a tightly packed mass) is about 0.20 fps, while the rate of ignition propagation from grain to grain is around 30 fps, over two orders of magnitude faster.[105]
Modern types[edit]
Modern corning first compresses the fine black powder meal into blocks with a fixed density (1.7 g/cm³).[108] In the United States, gunpowder grains were designated F (for fine) or C (for coarse). Grain diameter decreased with a larger number of Fs and increased with a larger number of Cs, ranging from about 2 mm for 7F to 15 mm for 7C. Even larger grains were produced for artillery bore diameters greater than about 17 cm (6.7 in). The standard DuPont Mammoth powder developed by Thomas Rodman and Lammot du Pont for use during the American Civil War had grains averaging 0.6 inches diameter, with edges rounded in a glazing barrel.[107] Other versions had grains the size of golf and tennis balls for use in 20-inch (50-cm) Rodman guns.[109] In 1875 DuPont introduced Hexagonal powder for large artillery, which was pressed using shaped plates with a small center core—about 1.5 inches diameter, like a wagon wheel nut, the center hole widened as the grain burned.[110] By 1882 German makers also produced hexagonal grained powders of a similar size for artillery.[110]
By the late 19th century manufacturing focused on standard grades of black powder from Fg used in large bore rifles and shotguns, through FFg (medium and small-bore arms such as muskets and fusils), FFFg (small-bore rifles and pistols), and FFFFg (extreme small bore, short pistols and most commonly for priming flintlocks).[111] A coarser grade for use in military artillery blanks was designated A-1. These grades were sorted on a system of screens with oversize retained on a mesh of 6 wires per inch, A-1 retained on 10 wires per inch, Fg retained on 14, FFg on 24, FFFg on 46, and FFFFg on 60. Fines designated FFFFFg were usually reprocessed to minimize explosive dust hazards.[112] In the United Kingdom, the main service gunpowders were classified RFG (rifle grained fine) with diameter of one or two millimeters and RLG (rifle grained large) for grain diameters between two and six millimeters.[109] Gunpowder grains can alternatively be categorized by mesh size: the BSS sieve mesh size, being the smallest mesh size, which retains no grains. Recognized grain sizes are Gunpowder G 7, G 20, G 40, and G 90.
Owing to the large market of antique and replica black-powder firearms in the US, modern gunpowder substitutes likePyrodex, Triple Seven and Black Mag3[113] pellets have been developed since the 1970s. These products, which should not be confused with smokeless powders, aim to produce less fouling (solid residue), while maintaining the traditional volumetric measurement system for charges. Claims of less corrosiveness of these products have been controversial however. New cleaning products for black-powder guns have also been developed for this market.[111]
Other types of gunpowder[edit]
Besides black powder, there are other historically important types of gunpowder. "Brown gunpowder" is cited as composed of 79% nitre, 3% sulfur, and 18% charcoal per 100 of dry powder, with about 2% moisture. Prismatic Brown Powder is a large-grained product the Rottweil Company introduced in 1884 in Germany, which was adopted by the British Royal Navy shortly thereafter. The French navy adopted a fine, 3.1 millimeter, not prismatic grained product called Slow Burning Cocoa (SBC) or "cocoa powder". These brown powders reduced burning rate even further by using as little as 2 percent sulfur and using charcoal made from rye straw that had not been completely charred, hence the brown color.[110]
Lesmok powder was a product developed by DuPont in 1911,[114] one of several semi-smokeless products in the industry containing a mixture of black and nitrocellulose powder. It was sold to Winchester and others primarily for .22 and .32 small calibers. Its advantage was that it was believed at the time to be less corrosive than smokeless powders then in use. It was not understood in the U.S. until the 1920s that the actual source of corrosion was the potassium chloride residue from potassium chlorate sensitized primers. The bulkier black powder fouling better disperses primer residue. Failure to mitigate primer corrosion by dispersion caused the false impression that nitrocellulose-based powder caused corrosion.[115] Lesmok had some of the bulk of black powder for dispersing primer residue, but somewhat less total bulk than straight black powder, thus requiring less frequent bore cleaning.[116] It was last sold by Winchester in 1947.
Sulfur-free gunpowder[edit]
https://upload.wikimedia.org/wikipedia/commons/thumb/d/de/Burst_muzzle_loader_barrel.jpg/220px-Burst_muzzle_loader_barrel.jpg
Burst barrel of a muzzle loader pistol replica, which was loaded with nitrocellulose powder instead of black powder and could not withstand the higher pressures of the modern propellant
The development of smokeless powders, such as cordite, in the late 19th century created the need for a spark-sensitive priming charge, such as gunpowder. However, the sulfur content of traditional gunpowders caused corrosion problems with Cordite Mk I and this led to the introduction of a range of sulfur-free gunpowders, of varying grain sizes.[66] They typically contain 70.5 parts of saltpeter and 29.5 parts of charcoal.[66] Like black powder, they were produced in different grain sizes. In the United Kingdom, the finest grain was known as sulfur-free mealed powder (SMP). Coarser grains were numbered as sulfur-free gunpowder (SFG n): 'SFG 12', 'SFG 20', 'SFG 40' and 'SFG 90', for example; where the number represents the smallest BSS sieve mesh size, which retained no grains.
Sulfur's main role in gunpowder is to decrease the ignition temperature. A sample reaction for sulfur-free gunpowder would be
6 KNO3 + C7H4O → 3 K2CO3 + 4 CO2 + 2 H2O + 3 N2
Combustion characteristics[edit]
A simple, commonly cited, chemical equation for the combustion of black powder is
2 KNO3 + S + 3 C → K2S + N2 + 3 CO2.
A balanced, but still simplified, equation is[117]
10 KNO3 + 3 S + 8 C → 2 K2CO3 + 3 K2SO4 + 6 CO2 + 5 N2.
Although charcoal's chemical formula varies, it can be summed up by its empirical formula: C7H4O.[citation needed]Therefore, a more accurate equation of the decomposition of regular black powder with sulfur is:
6 KNO3 + C7H4O + 2 S → K2CO3 + K2SO4 + K2S + 4 CO2 + 2 CO + 2 H2O + 3 N2
Black powder without sulfur gives:
10 KNO3 + 2 C7H4O → 5 K2CO3 + 4 CO2 + 5 CO + 4 H2O + 5 N2
However, gunpowder does not burn as a single reaction, so the byproducts are not easily predicted. One study showed that it produced (in order of descending quantities) 55.91% solid products: potassium carbonate, potassium sulfate,potassium sulfide, sulfur, potassium nitrate, potassium thiocyanate, carbon, ammonium carbonate and 42.98% gaseous products: carbon dioxidenitrogencarbon monoxidehydrogen sulfidehydrogenmethane, 1.11% water.
Black powder made with less-expensive and more plentiful sodium nitrate (in appropriate proportions) works just as well but is more hygroscopic than powders made from potassium nitrate—popularly known as saltpeter. Because corned black powder grains made with saltpeter are less affected by moisture in the air, they can be stored unsealed without degradation by humidity. Muzzleloaders have been known to fire after hanging on a wall for decades in a loaded state, provided they remained dry. By contrast, black powder made with sodium nitrate must be kept sealed to remain stable.
Gunpowder contains 3 megajoules per kilogram and contains its own oxidant. For comparison, the specific energy of TNTis 4.7 megajoules per kilogram, and the specific energy of gasoline is 47.2 megajoules per kilogram (though gasoline requires an oxidant, so an optimized gasoline and O2 mixture contains 10.4 megajoules per kilogram). Gunpowder is alow explosive, so it does not detonate but rather deflagrates. Since it contains its own oxidizer and additionally burns faster under pressure, its combustion is capable of bursting containers such as shell, grenade, or improvised "pipe bomb" or "pressure cooker" casings to form shrapnel.
Advantages[edit]
In quarrying, high explosives are generally preferred for shattering rock. However, because of its low brisance, black powder causes fewer fractures and results in more usable stone compared to other explosives, making black powder useful for blasting monumental stone such as granite and marble. Black powder is well suited for blank roundssignal flaresburst charges, and rescue-line launches. Black powder is also used in fireworks for lifting shells, in rockets as fuel, and in certain special effects.
Disadvantages[edit]
Black powder has a low energy density compared to modern "smokeless" powders, and thus to achieve high energy loadings, large amounts of black powder are needed with heavy projectiles. Black powder also produces thick smoke as a byproduct, which in military applications may give a soldier's location away to an enemy observer and may also impair aiming for additional shots.
Combustion converts less than half the mass of black powder to gas. The rest ends up as a thick layer of soot inside the barrel. In addition to being a nuisance, the residue from burnt black powder is hygroscopic and with the addition of moisture absorbed from the air, this residue forms a caustic substance. The soot contains potassium oxide or sodium oxide that turns into potassium hydroxide, or sodium hydroxide, which corrodes wrought iron or steel gun barrels. Black powder arms must be well cleaned both inside and out to remove the residue. The matchlock musket or pistol (an early gun ignition system), as well as the flintlock would often be unusable in wet weather, due to powder in the pan being exposed and dampened. Because of this unreliability, soldiers carrying muskets, known as musketeers, were armed with additional weapons such as swords or pikes. The bayonet was developed to allow the musket to be used as a pike, thus eliminating the need for the soldier to carry a secondary weapon.
Transportation[edit]
The United Nations Model Regulations on the Transportation of Dangerous Goods and national transportation authorities, such as United States Department of Transportation, have classified gunpowder (black powder) as a Group A: Primary explosive substance for shipment because it ignites so easily. Complete manufactured devices containing black powder are usually classified as Group D: Secondary detonating substance, or black powder, or article containing secondary detonating substance, such as firework, class D model rocket engine, etc., for shipment because they are harder to ignite than loose powder. As explosives, they all fall into the category of Class 1.
Other uses[edit]
Besides its use as an explosive, gunpowder has been occasionally employed for other purposes; after the Battle of Aspern-Essling (1809), the surgeon of the Napoleonic Army Larrey, lacking salt, seasoned a horse meat bouillon for the wounded under his care with gunpowder.[118][119] It was also used for sterilization in ships when there was no alcohol.
Jack Tars (British sailors) used gunpowder to create tattoos when ink wasn't available, by pricking the skin and rubbing the powder into the wound in a method known as traumatic tattooing.[120]
Christiaan Huygens experimented with gunpowder in 1673 in an early attempt to build an internal combustion engine, but he did not succeed. Modern attempts to recreate his invention were similarly unsuccessful.
Fireworks use gunpowder as lifting and burst charges, although sometimes other more powerful compositions are added to the burst charge to improve performance in small shells or provide a louder report. Most modern firecrackers no longer contain black powder.
Beginning in the 1930s, gunpowder or smokeless powder was used in rivet gunsstun guns for animals, cable splicers and other industrial construction tools.[121] The "stud gun" drove nails or screws into solid concrete, a function not possible with hydraulic tools. See powder-actuated tool. Shotguns have been used to eliminate persistent material rings in operating rotary kilns (such as those for cement, lime, phosphate, etc.) and clinker in operating furnaces, and commercial tools make the method more reliable.[122]
Near London in 1853, Captain Shrapnel demonstrated a method for crushing gold-bearing ores by firing them from a cannon into an iron chamber, and "much satisfaction was expressed by all present". He hoped it would be useful on thegoldfields of California and Australia. Nothing came of the invention, as continuously-operating crushing machines that achieved more reliable comminution were already coming into use.[123]
See also[edit]
·         Ballistics
·         Berthold Schwarz
·         Black powder substitute
·         Bulk loaded liquid propellants
·         Faversham explosives industry
·         Gunpowder magazine
·         Gunpowder Plot
·         Gunpowder warfare
·         History of gunpowder
·         Technology of the Song dynasty
References[edit]
2.     Jump up^ Jai Prakash Agrawal (2010). High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH. p. 69. ISBN 978-3-527-32610-5.
3.     Jump up^ David Cressy, Saltpeter: The Mother of Gunpowder (Oxford University Press, 2013)
4.     Jump up^ "Who Built It First?".History.com.
5.     Jump up^ Anne Marie Helmenstine, Ph.D."Gunpowder Facts, History and Description". About.com Education.
6.     Jump up^ Chase 2003:31 : "the earliest surviving formulas for gunpowder can be found in the Wujing zongyao, a military work from around 1040"
7.     Jump up to:a b c Buchanan 2006, p. 2 "With its ninth century AD origins in China, the knowledge of gunpowder emerged from the search by alchemists for the secrets of life, to filter through the channels of Middle Eastern culture, and take root in Europe with consequences that form the context of the studies in this volume."
8.     Jump up to:a b c Joseph Needham; Gwei-Djen Lu; Ling Wang (1987). Science and civilisation in China, Volume 5, Part 7. Cambridge University Press. pp. 48–50. ISBN 978-0-521-30358-3.
9.     Jump up^ Owen Compliance Services."Black Powder" (PDF). Material Safety Data Sheet. Retrieved31 August 2014.
10.  Jump up^ Hazel Rossotti (2002). Fire: Servant, Scourge, and Enigma. Courier Dover Publications. pp. 132–137. ISBN 978-0-486-42261-9.
11.  Jump up^ Jack Kelly Gunpowder: Alchemy, Bombards, and Pyrotechnics: The History of the Explosive that Changed the World, Perseus Books Group: 2005, ISBN 0-465-03722-4,ISBN 978-0-465-03722-3, 272 pages
12.  Jump up^ St. C. Easton: "Roger Bacon and his Search for a Universal Science", Oxford (1962)
13.  Jump up to:a b Gábor Ágoston (2005). Guns for the sultan: military power and the weapons industry in the Ottoman Empire. Cambridge University Press. p. 15. ISBN 978-0-521-84313-3.
14.  Jump up^ Ingham-Brown, George (1989)The Big Bang: A History of Explosives, Sutton Publishers, ISBN 0-7509-1878-0ISBN 978-0-7509-1878-7, page vi
15.  Jump up^ Kelly, Jack (2005) Gunpowder: Alchemy, Bombards, and Pyrotechnics: The History of the Explosive that Changed the World, Perseus Books Group, ISBN 0-465-03722-4ISBN 978-0-465-03722-3, page 22
16.  Jump up^ Bert S. Hall, "Introduction, 1999" pp. xvi–xvii to the reprinting ofJames Riddick Partington (1960). A history of Greek fire and gunpowder. JHU Press. ISBN 978-0-8018-5954-0.
17.  Jump up to:a b Peter Purton (2009). A History of the Late Medieval Siege, 1200–1500. Boydell & Brewer. pp. 108–109. ISBN 978-1-84383-449-6.
18.  Jump up^ Bert S. Hall, "Introduction, 1999" p. xvii to the reprinting of James Riddick Partington (1960). A history of Greek fire and gunpowder. JHU Press. ISBN 978-0-8018-5954-0.
19.  Jump up^ Buchanan. "Editor's Introduction: Setting the Context", in Buchanan 2006.
20.  Jump up to:a b Chase 2003:31–32
21.  Jump up^ Lorge, Peter A. (2008). The Asian military revolution, 1300-2000 : from gunpowder to the bomb (1. publ. ed.). Cambridge: Cambridge University Press. p. 32.ISBN 978052160954-8.
23.  Jump up^ The Big Book of Trivia Fun, Kidsbooks, 2004
24.  Jump up^ Peter Allan Lorge (2008), The Asian military revolution: from gunpowder to the bomb, Cambridge University Press, p. 18, ISBN 978-0-521-60954-8
25.  Jump up^ Needham 1986, p. 7 "Without doubt it was in the previous century, around +850, that the early alchemical experiments on the constituents of gunpowder, with its self-contained oxygen, reached their climax in the appearance of the mixture itself."
26.  Jump up^ Chase 2003:1 "The earliest known formula for gunpowder can be found in a Chinese work dating probably from the 800s. The Chinese wasted little time in applying it to warfare, and they produced a variety of gunpowder weapons, including flamethrowers, rockets, bombs, and land mines, before inventing firearms."
28.  Jump up^ Delgado, James (February 2003)."Relics of the Kamikaze".Archaeology. Archaeological Institute of America. 56 (1).
29.  Jump up^ Chase 2003:31
30.  Jump up^ Peter Allan Lorge (2008), The Asian military revolution: from gunpowder to the bomb, Cambridge University Press, pp. 33–34,ISBN 978-0-521-60954-8
31.  Jump up^ Kelly 2004:22 'Around year 1240, Arabs acquired knowledge of saltpeter ("Chinese snow") from the East, perhaps through India. They knew of gunpowder soon afterward. They also learned about fireworks ("Chinese flowers") and rockets ("Chinese arrows"). Arab warriors had acquired fire lances before year 1280. Around that same year, aSyrian named Hasan al-Rammah wrote a book that, as he put it, "treats of machines of fire to be used for amusement or for useful purposes." He talked of rockets, fireworks, fire lances, and other incendiaries, using terms that suggested he derived his knowledge from Chinese sources. He gave instructions for the purification of saltpeter and recipes for making different types of gunpowder.'
32.  Jump up to:a b c d Hassan, Ahmad Y."Transfer of Islamic Technology to the West: Part III". History of Science and Technology in Islam.
33.  Jump up^ Peter Watson (2006). Ideas: A History of Thought and Invention, from Fire to Freud. HarperCollins. p. 304. ISBN 978-0-06-093564-1.The first use of a metal tube in this context was made around 1280 in the wars between the Song and the Mongols, where a new term, chong, was invented to describe the new horror...Like paper, it reached the West via the Muslims, in this case the writings of the Andalusian botanist Ibn al-Baytar, who died in Damascus in 1248. The Arabic term for saltpetre is 'Chinese snow' while the Persian usage is 'Chinese salt'.28
34.  Jump up^ Cathal J. Nolan (2006). The age of wars of religion, 1000–1650: an encyclopedia of global warfare and civilization. Volume 1 of Greenwood encyclopedias of modern world wars. Greenwood Publishing Group. p. 365. ISBN 0-313-33733-0. Retrieved 2011-11-28.In either case, there is linguistic evidence of Chinese origins of the technology: in Damascus, Arabs called the saltpeter used in making gunpowder "Chinese snow," while in Iran it was called "Chinese salt." Whatever the migratory route
35.  Jump up^ Oliver Frederick Gillilan Hogg (1970). Artillery: its origin, heyday, and decline. Archon Books. p. 123. The Chinese were certainly acquainted with saltpetre, the essential ingredient of gunpowder. They called it Chinese Snow and employed it early in the Christian era in the manufacture of fireworks and rockets.
36.  Jump up^ Oliver Frederick Gillilan Hogg (1963). English artillery, 1326–1716: being the history of artillery in this country prior to the formation of the Royal Regiment of Artillery. Royal Artillery Institution. p. 42. The Chinese were certainly acquainted with saltpetre, the essential ingredient of gunpowder. They called it Chinese Snow and employed it early in the Christian era in the manufacture of fireworks and rockets.
37.  Jump up^ Oliver Frederick Gillilan Hogg (1993). Clubs to cannon: warfare and weapons before the introduction of gunpowder (reprint ed.). Barnes & Noble Books. p. 216.ISBN 1-56619-364-8. Retrieved2011-11-28. The Chinese were certainly acquainted with saltpetre, the essential ingredient of gunpowder. They called it Chinese snow and used it early in the Christian era in the manufacture of fireworks and rockets.
38.  Jump up^ Partington, J. R. (1960). A History of Greek Fire and Gunpowder(illustrated, reprint ed.). JHU Press. p. 335. ISBN 0801859549. Retrieved 2014-11-21.
39.  Jump up^ Needham, Joseph; Yu, Ping-Yu (1980). Needham, Joseph, ed.Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 4, Spagyrical Discovery and Invention: Apparatus, Theories and Gifts. Volume 5. Contributors Joseph Needham, Lu Gwei-Djen, Nathan Sivin (illustrated, reprint ed.). Cambridge University Press. p. 194. ISBN 052108573X. Retrieved 2014-11-21.
41.  Jump up to:a b Khan 2004:6
42.  Jump up^ Ancient Discoveries, Episode 12: Machines of the East, History Channel, 2007 (Part 4 and Part 5)
43.  Jump up^ Nelson, Cameron Rubaloff (2010-07). Manufacture and transportation of gunpowder in the Ottoman Empire: 1400-1800 M.A. Thesis.
44.  Jump up^ William H. McNeill (1992). The Rise of the West: A History of the Human Community. University of Chicago Press. p. 492. ISBN 0-226-56141-0. Retrieved 29 July 2011.
45.  Jump up^ Michael Kohn (2006), Dateline Mongolia: An American Journalist in Nomad's Land, RDR Books, p. 28, ISBN 1-57143-155-1, retrieved 29 July 2011
46.  Jump up^ Robert Cowley (1993). Robert Cowley, ed. Experience of War(reprint ed.). Random House Inc. p. 86. ISBN 0-440-50553-4. Retrieved 29 July 2011.
47.  Jump up^ Kenneth Warren Chase (2003).Firearms: a global history to 1700(illustrated ed.). Cambridge University Press. p. 58. ISBN 0-521-82274-2. Retrieved 29 July 2011.
48.  Jump up^ C. F. Temler, Historische Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Kopenhagen ... ubersetzt ... von V. A. Heinze, Kiel, Dresden and Leipzig, 1782, i, 168, as cited in Partington, p. 228, footnote 6.
49.  Jump up^ Joseph Needham; Gwei-Djen Lu; Ling Wang (1987). Science and civilisation in China, Volume 5, Part 7. Cambridge University Press. p. 358. ISBN 978-0-521-30358-3.
50.  Jump up^ Bert S. Hall, "Introduction, 1999" p. xxiv to the reprinting of James Riddick Partington (1960). A history of Greek fire and gunpowder. JHU Press. ISBN 978-0-8018-5954-0.
52.  Jump up to:a b Partington 1960:48–49, 54
53.  Jump up to:a b Partington 1960:82–83
54.  Jump up to:a b c d Kelly 2004, p.61
55.  Jump up^ Molerus, Otto. "History of Civilization in the Western Hemisphere from the Point of View of Particulate Technology, Part 2," Advanced Powder Technology 7 (1996): 161-66
56.  Jump up^ "Early printing, 15th and 16th century" (PDF). Asher Rare Books. Retrieved 4 May 2015.
57.  Jump up^ Microsoft Encarta Online Encyclopedia 2007 Archived 31 October 2009.
58.  Jump up^ Philip, Chris (1988). A bibliography of firework books : works on recreative fireworks from the sixteenth to the twentieth century. Dingmans Ferry, Pa.: American Fireworks News. ISBN 978-0929931005.
59.  Jump up^ In 1777 Lavoisier named oxygen, which had earlier been isolated byPriestley; the realization that saltpeter contained this substance was fundamental to understanding gunpowder.
60.  Jump up to:a b Kelly 2004, p.164
61.  Jump up^ Metzner, Paul (1998), Crescendo of the Virtuoso: Spectacle, Skill, and Self-Promotion in Paris during the Age of Revolution, University of California Press
62.  Jump up to:a b c d Cocroft 2000, "Success to the Black Art!". Chapter 1
63.  Jump up^ Ross, Charles. The Custom of the Castle: From Malory to Macbeth. Berkeley: University of California Press, c1997. [1] pages 131-130
65.  Jump up^ Pritchard, Tom; Evans, Jack; Johnson, Sydney (1985), The Old Gunpowder Factory at Glynneath, Merthyr Tydfil: Merthyr Tydfil & District Naturalists' Society
66.  Jump up to:a b c d e Cocroft 2000, "The demise of gunpowder". Chapter 4
67.  Jump up^ MacDougall, Ian (2000). 'Oh, ye had to be careful' : personal recollections by Roslin gunpowder mill and bomb factory workers. East Linton, Scotland: Tuckwell Press in association with the European Ethnological Research Centre and the Scottish Working People's History Trust. ISBN 1-86232-126-4.
68.  Jump up^ Iqtidar Alam Khan (2004).Gunpowder And Firearms: Warfare In Medieval India. Oxford University Press. ISBN 978-0-19-566526-0.
69.  Jump up to:a b Iqtidar Alam Khan (25 April 2008). Historical Dictionary of Medieval India. Scarecrow Press. p. 157. ISBN 978-0-8108-5503-8.
70.  Jump up to:a b Khan 2004:9–10
71.  Jump up^ Khan 2004:10
72.  Jump up^ Partington (Johns Hopkins University Press edition, 1999), 225
73.  Jump up^ Partington (Johns Hopkins University Press edition, 1999), 226
74.  Jump up^ "Mughal Matchlock". YouTube.
75.  Jump up to:a b c "India." Encyclopædia Britannica. Encyclopedia Britannica 2008 Ultimate Reference Suite. Chicago: Encyclopedia Britannica, 2008.
76.  Jump up^ "rocket and missile system." Encyclopædia Britannica. Encyclopædia Britannica 2008 Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2008.
77.  Jump up to:a b Dipanegara, P. B. R. Carey,Babad Dipanagara: an account of the outbreak of the Java war, 1825-30 : the Surakarta court version of the Babad Dipanagara with translations into English and Indonesian volume 9: Council of the M.B.R.A.S. by Art Printing Works: 1981.
78.  Jump up^ Atsushi, Ota (2006). Changes of regime and social dynamics in West Java : society, state, and the outer world of Banten, 1750-1830. Leiden: Brill. ISBN 90-04-15091-9.
79.  Jump up to:a b Thomas Stamford Raffles, The History of Java, Oxford University Press, 1965 (originally published in 1817), ISBN 0-19-580347-7
80.  Jump up^ Raffles, Thomas Stamford (1978).The History of Java ([Repr.]. ed.). Kuala Lumpur: Oxford University Press. ISBN 0-19-580347-7.
81.  Jump up^ US Department of Agriculture (1917). Department Bulleting No. 316: Willows: Their growth, use, and importance. The Department. p. 31.
82.  Jump up^ Kelly 2004, p.200
83.  Jump up to:a b Earl 1978, Chapter 2: The Development of Gunpowder
84.  Jump up^ Kelly 2004:60–63
85.  Jump up^ Kelly 2004, p.199
86.  Jump up^ Jecock, Marcus; Dunn, Christopher; et al. (2009). "Gatebeck Low Gunpowder Works and the Workers' Settlements of Endmoor and Gatebeck, Cumbria". Research Department Report Series. English Heritage. 63-2009. ISSN 1749-8775.
87.  Jump up^ Heller, Cornelia (December 2009)."Stassfurt" (PDF). STASSFURT - FAD. Ministry of Regional Development and Transport Saxony-Anhalt. p. 10. Retrieved27 May 2015.
88.  Jump up^ Frangsmyr, Tore, J. L. Heilbron, and Robin E. Rider, editors The Quantifying Spirit in the Eighteenth Century. Berkeley: University of California Press, c. 1990.http://ark.cdlib.org/ark:/13030/ft6d5nb455/ p. 292.
89.  Jump up^ C.E. Munroe (1885) "Notes on the literature of explosives no. VIII", Proceedings of the US Naval Institute, no. XI, p. 285
91.  Jump up^ Blackpowder to Pyrodex and Beyond by Randy Wakeman at Chuck Hawks
92.  Jump up^ The History and Art of Shotshells by Jon Farrar, Nebraskaland Magazine
93.  Jump up^ Buchanan. "Editor's Introduction: Setting the Context", in Buchanan 2006, p. 4.
94.  Jump up^ Black Powder Recipes, Ulrich Bretscher
95.  Jump up^ Julian S. Hatcher, Hatcher's Notebook, Military Service Publishing Company, 1947. Chapter XIII Notes on Gunpowder, pages 300-305.
96.  Jump up^ Kelly 2004, p.218
97.  Jump up^ "Some Account of Gunpowder".The Saturday Magazine. 422, supplement: 33–40. January 1839.
98.  Jump up^ Wisniak, J. J.; Garcés, I. (September 2001). "The Rise and Fall of the Salitre (Sodium Nitrate) Industry". Indian Journal of Chemical Technology: 427–438.
99.  Jump up^ Ashford, Bob (2014). "Some Thoughts on Dartmoor Powdermills". Rep. Trans. Devon. Ass. Advmt Sci. Exeter: The Devonshire Association. 146: 57–82.
100.    Jump up^ William Lobb
101.    Jump up^ Book title Workshop Receipts Publisher William Clowes and Son limited Author Ernest Spon. Date 1 August 1873.
102.    Jump up^ GunpowderTranslation. Academic. Retrieved 2014-08-31.
103.    Jump up^ Cathal J. Nolan (2006), The age of wars of religion, 1000-1650: an encyclopedia of global warfare and civilization, Greenwood Publishing Group, p. 365, ISBN 978-0-313-33733-8
104.    Jump up to:a b c Kelly 2004, p58
105.    Jump up to:a b c John Francis Guilmartin (2003). Gunpowder & galleys: changing technology & Mediterranean warfare at sea in the 16th century. Conway Maritime Press. pp. 109–110 and 298–300.ISBN 0851779514.
106.    Jump up^ T.J. Rodman (1861), Reports of experiments on the properties of metals for cannon and the qualities of cannon powder, p. 270
107.    Jump up to:a b Kelly 2004, p.195
108.    Jump up^ Tenney L. Davis (1943). The Chemistry of Powder and Explosives (PDF). p. 139.
109.    Jump up to:a b Brown, G.I. (1998) The Big Bang: A history of Explosives Sutton Publishing pp.22&32 ISBN 0-7509-1878-0
110.    Jump up to:a b c Kelly 2004, p.224
111.    Jump up to:a b Rodney James (2011). The ABCs of Reloading: The Definitive Guide for Novice to Expert (9 ed.). Krause Publications. pp. 53–59.ISBN 978-1-4402-1396-0.
112.    Jump up^ Sharpe, Philip B. (1953) Complete Guide to Handloading Funk & Wagnalls p.137
113.    Jump up^ Wakeman, Randy. "Blackpowder to Pyrodex and Beyond". Retrieved 31 August 2014.
115.    Jump up^ Julian S. Hatcher, Hatcher's Notebook, Stackpole Books, 1962. Chapter XIV, Gun Corrosion and Ammunition Developments, pages 346-349.
116.    Jump up^ Wakeman, Randy. "Blackpowder to Pyrodex and Beyond".
117.    Jump up^ Flash! Bang! Whiz!, University of Denver
118.    Jump up^ Parker, Harold T. (1983). Three Napoleonic battles. (Repr., Durham, 1944. ed.). Durham, NC: Duke Univ. Pr. p. 83. ISBN 0-8223-0547-X.
119.    Jump up^ Larrey is quoted in French at DrBéraudÉtudes Hygiéniques de la chair de cheval comme aliment,Musée des Familles (1841-42).
120.    Jump up^ Rediker, Marcus (1989). Between the devil and the deep blue sea : merchant seamen, pirates, and the Anglo-American maritime world, 1700-1750 (1st pbk. ed.). Cambridge: Cambridge University Press. p. 12. ISBN 9780521379830.
122.    Jump up^ "MasterBlaster System". Remington Products.
123.    Jump up^ Mining Journal 22 January 1853, p. 61
·         Benton, Captain James G. (1862). A Course of Instruction in Ordnance and Gunnery (2 ed.). West Point, New York: Thomas Publications. ISBN 1-57747-079-6.
·         Brown, G. I. (1998). The Big Bang: A History of Explosives. Sutton Publishing. ISBN 0-7509-1878-0.
·         Buchanan, Brenda J., ed. (2006).Gunpowder, Explosives and the State: A Technological History. Aldershot: Ashgate. ISBN 0-7546-5259-9.
·         Chase, Kenneth (2003). Firearms: A Global History to 1700. Cambridge University Press. ISBN 0-521-82274-2.
·         Cocroft, Wayne (2000). Dangerous Energy: The archaeology of gunpowder and military explosives manufacture. Swindon: English Heritage. ISBN 1-85074-718-0.
·         Crosby, Alfred W. (2002). Throwing Fire: Projectile Technology Through History. Cambridge University Press. ISBN 0-521-79158-8..
·         Earl, Brian (1978). Cornish Explosives. Cornwall: The Trevithick Society.ISBN 0-904040-13-5..
·         Johnson, Norman Gardner."explosive". Encyclopædia Britannica. Chicago: Encyclopædia Britannica Online.
·         Kelly, Jack (2004). Gunpowder: Alchemy, Bombards, & Pyrotechnics: The History of the Explosive that Changed the World. Basic Books.ISBN 0-465-03718-6.
·         Khan, Iqtidar Alam (1996). "Coming of Gunpowder to the Islamic World and North India: Spotlight on the Role of the Mongols". Journal of Asian History. 30: 41–5.

·         Khan, Iqtidar Alam (2004). "Gunpowder and Firearms: Warfare in Medieval India". Oxford University Press.doi:10.1086/ahr.111.3.817.