۱۳۹۵ تیر ۲۸, دوشنبه

مداخل مخزن الادویه عقیلی خراسانی (چهارم) 7

اسفلیناس
بکسر همزه و سکون سین مهمله و فتح فا و کسر لام و سکون یای مثناه تحتانیه و فتح نون و الف و سین مهمله
ماهیت آن
از ادویۀ مجهوله است جالینوس آن را قنابری* دانسته و مالیقی غیر آن و کفته قنابری مشهور است نزد اهل شام و همه مردم ماهیت آن و همچنین منفعت آن غیر ماهیت و منفعت اسفلیناس است و دیسقوریدوس در ثالثه نوشته که آن کیاهی است شاخهای آن طولانی و بر شاخهای آن برکهای طولانی شبیه ببرک قسوس که لبلاب کبیر است باشد و ریشه های آن باریک و بسیار و طیب و کم بو و کل آن ثقیل الرائحه و تخم آن ریزه شبیه بتخم فالافیس و منبت آن کوهستانها و سنک لاخها
افعال و خواص
و منافع آن
آشامیدن بیخ آن با شراب جهت زحیر و پیچش و رفع سموم جانوران زهردار و ضماد برک آن جهت قروح خبیثۀ عارضه در پستان و رحم نافع و جالینوس در سابعه نوشته که هنوز این دوا را من بتجربه نیاورده ام و اختیار نکرده
مخزن الادویه عقیلی خراسانی
* قنابری . [ ق ُ ب َ را ] (ع اِ) سبزی غملول . (اقرب الموارد). نوعی از تره . (منتهی الارب ). اسم عربی غملول است که به فارسی برغست نامند. (فهرست مخزن الادویة) (مهذب الاسماء). تملول . (یادداشت مؤلف ).کملول . (یادداشت مؤلف ). بچند. بژند. سبزج . قُنّابَری ̍ یا کُنابِری و آن را به عربی غملول و نملول و قملول و فوهق و شجرة البهق و به یونانی قیفهیمالون و برومی قبار و مبدوس و بخراسانی برغشت و به فارسی بزندو بخند و به شیرازی سبزه و سوده و به اصفهانی موجه نامند. ماهیت آن : نباتی است که در اول ربیع میروید وتا آخر آن میماند و بغدادی گفته از بقول صحرائی است و برگ آن کوچکتر از برگ کاسنی صحرایی و با اندک حدت و تلخی و گل آن سفید باریک و تخم آن اغبر رقیق ، و صاحب تحفه نوشته برگ آن شبیه به اسفناج با اندک تندی و تلخی است ، و بقدر شبری و ساق آن باریک و گل آن سفیدریزه و تخم آن در غلافی بقدر نخود و در هر غلاف چهار عدد بسیار شبیه بخردل و بهترین آن تازه ٔ آن است که در شاخه های آن اندک سرخی باشد طبیعت آن گرم در اول و خشک در آخر آن و بعضی در دوم خشک گفته اند. افعال و خواص آن لطیف وجالی و مقطع و از ادویه ٔ نافعه است جهت محرورین و مبرودین هر دو اعضاء الصدر والغذاء و النقض منقی سینه و ریه از کیموسات غلیظه و مفتح سده ٔ کبد و طحال و مدر بول و حیض و شیر و عرق و آشامیدن آب آن اطلاق طبیعت و رفع یرقان و مغص و اخراج کیموسات غلیظه مینماید و ضماد آن جهت بواسیر و مغص و تحلیل صلابات رحم نافع الزینه جهت کلف و وضح و بهق بهترین دوای است ضماداً و شرباً و گفته اند خوردن آن به اندک زمانی و قلیل الایامی وضح را زایل میگرداند و به دستور تدهین آن جهت امراض مذکوره و زخم پستان و ضماد آن جهت نهش جمیع هوام سمی مؤثر و مضار آن اینکه مولد سوداست خصوصاً نمک پروده ٔ آن ، مصلح آن طبخ و بریان نمودن آن است و روغن ها مانند بادام و کنجد و غیر آن و گفته اند مصلح آن هلیله ٔ کابلی است و شکر. (مخزن الادویة).و رجوع به تحفه ٔ حکیم مؤمن و تذکره ٔ انطاکی شود.
&&&&&
اسفنج .[ اِ ف َ / اِ ف ُ / اَ ف َ ] (معرب ، اِ) (از لاتینی سپُنْژیا ) چیزی است شبیه به نمد کرم خورده و آنرا ابر مرده و ابر کهن گویند، وبعربی رغوةالحجامین و هرشفه خوانند. گویند حیوانی است دریائی بدان جهت که چون دست بر وی نهند خود را جمع کند و چون بمیرد موجه او را بساحل اندازد و بعضی گویند نباتی است دریائی . اگر در شراب ممزوج به آب گذارند آب آنرا بخود کشد و شراب را بگذارد و با خاکستر آن زخمی را که در ساعت زده باشند خشک بند کند و زود نیکو سازد. گرم و خشک است در اول و دویم . (برهان قاطع). بفارسی ابر مرده گویند و آن چیزی است که بر روی سنگهای کنار دریا متکوّن میشود. قسمی ازو که متخلخل و وسیعالثقب است و نرم و شبیه بنمد و پرسوراخ است ماده گویند و قسمی که باصلابت و با ثقبهای صغیر است نَرنامند. در اول گرم و در دوم خشک و مجفّف و محلّل و با قوه ٔ جاذبه و چون تازه ٔ او را با سرکه ممزوج یا شراب تر کرده بر جراحات تازه بگذارند التیام دهد و بالخاصیه قاطع نزف الدّم و با عسل مطبوخ و مطبوخ با آب جهت التیام زخمهای کهنه ، و خشک او مجفف قروح عمیقه وسوخته ٔ او جهت منع نزف الدم قوی تر و جهت رمد یابس و جلاء باصره ، و فتیله ٔ تازه ٔ او بتنهائی و با پنبه و کتان ، مفتح افواه عروق مضمومه و جراحات جاسیه و محرق مغسول او در ادویه ٔ عین نافعتر است و چون قطعه ٔ او را بقدری که توان فروبرد به خیاطه بسته بلع کنند و یک سر خیاطه را بدست نگاه دارند و لمحه ای صبر کنند که جذب رطوبات کرده بالیده گردد و بعد از آن خیاطه را بکشند تا از گلو او را بیرون آورد در اخراج زلو و خارکه در حلق مانده باشد بی عدیل است و سنگهایی که در جوف او بهم میرسد در تفتیت حصاة مجرّب . و چون خواهند که بجهت زینت اسفنج را سفید کنند باید قسم ماده ٔ او را با آب تر کرده و مکرر در آفتاب تند یا ماهتاب گذاشت . (تحفه ٔ حکیم مؤمن ). وی را ابر کهن گویند و ابر مرده گویند و گویند حیوان دریائیست بدان سبب که چون دست بر وی نهی خود را درکشد، وقتی که بمیرد آب وی رابر کنار اندازد و گویند نباتی دریائیست و این محقق است باقی خلاف است و بهترین وی آن است که تازه بود و طبیعت وی گرم است در اول و خشک در دویم . و منفعت وی آن است که چون بسوزانند و خاکستر وی در زخمی که در ساعت زده باشند خشک بند کنند نافع بود و اگر بیاشامندخون رفتن بازدارد و مجفف اورام بلغمی و ریشها بود واگر خاکستر وی بشویند جهت درد چشم سودمند بود و جلای تمام دهد. و شیخ الرئیس گوید: چون با زفت بسوزانند قطع نفث الدم کند و تازه ٔ وی مضر بود به احشاء و مصلح وی رب غوره بود با ریباس و از خواص اسفنج یکی آنست که اگر شراب با آب ممزوج بود وی را چون در آن اندازندآبها جمله برگیرد و اگر خواهند که همچنان مستعمل کنند به مقراض پاره کنند که بهاون بتوان کوفت و سبک و متخلخل باشد و بخانه ٔ زنبور ماند. بلغت عرب هرشفه گویند و پارسی نشکرد گازران . آنرا در آب می نهند و آب برمیگیرد و بجامه میمالند. (اختیارات بدیعی ). اسفنج ، بفتح همزه و فاء و سکون سین مهمله و نون ، ابر مرده باشد یعنی داروئی که چون در آب اندازند همه آب را بخورد و برچیند و ابر نیز گویند. کذا فی مؤید الفضلاء. (سروری ). اسفنج (انجیل متی 27: 48) ماده ای است حیوانی که در آبهای دریا بعمل می آید و مرکب از الیاف و رشته هائی است که بطور عجیب بهم بافته شده ، آنرا مسامات و خلل و فرج بسیار است که اشیاء مایعه را جذب می کندلهذا امکان دارد که در عوض پیاله و ظرفی برای شرب استعمال شود. اومیروس (هومر) که در حدود 850 ق .م . بود مینویسد که یونانیان اسفنج را برای شستن بدن و هم برای شستن میزها بعد از انقضای طعام استعمال میکردند. (قاموس کتاب مقدس ). بیرونی گوید: ان الصدف و الاسفنج یشبه المعادن بارواحها و النبات باجسادها. (الجماهر بیرونی ص 191). اسفنج ، و قد تحذف الهمزة و هو سحاب البحر و غمامه و یسمی الزبد الطری و هو رطوبات تنتسج فی جوانب البحر متخلخلة کثیرةالثقوب یبیضه الشمس و القمر اذا بل و وضع فیهما مراراً و قد یتحرک بماء فیه لاروح (؟) و الذکر منه صلب و هو حارّ فی الثانیة یابس فی اول الثالثة یحبس الدم و لو بلا حرق و یدمل بالشراب و محروقه أقوی و قطعة منه اذا ربطت بخیط و ابتلعت و فی الید طرف الخیط و اخرجت اخرجت ما ینشب فی الحلق من نحو العلق و الشوک و یقتل الفار اذا قرض صغاراً و دهن بزیت و ینفع من الابردة بالعسل و الشراب طلاء و رماده یقع فی الاکحال فیجفف و ینفع من الرمد الیابس و ما فی داخله من الاحجار یفتت الحصی مجرب . (تذکره ٔ ضریر انطاکی ج 1 ص 46). اسفنج بیخ و عروق درختی است که جراحات متعفنه را نفع دهد یا آن همان ابر مرده است که بر روی شکنهای کنار دریا متکون شود، متخلخل وبسیارسوراخ و آبرا بسیار بردارد و چون تازه ٔ او را بسرکه ممزوج با شراب تر کرده بر جراحات تازه بگذارنددر حال التیام دهد و مطبوخ بآب جهت زخمهای کهنه نافع است . (منتهی الارب ). اسفنج ، جسم بحری رخو متخلخل کاللبد. یقال انه حیوان یتحرک فی الماء یلتصق به [ کذا] و لایبرحه . (قانون ابوعلی چ تهران مقاله ٔ 2 از کتاب 2 ص 159 چهار سطر به آخر مانده ). اسفنج ، جسمی است رخو و متخلخل چون نمدی و از دریا خیزد و چون بر آب نهی آب بسیار به خود کشد و اصناف آن سپید و زرد کم رنگ و نیز سیاه باشد. اسفنجة. سفنج . اسفنج البحر . اسفنجة بحریة. (دزی ج 1 ص 22) (ابن البیطار). سحاب البحر. ابر. ابر دریائی . ابر مرده . (مؤید الفضلاء). ابر کهن . زبدالبحر. غیم . رغوةالحجامین . هرشفه . غمام . (برهان ). نشکرد گازران :
چون زنده گیا زنده ٔ مرده ست بصورت
با آنکه تنش مرده ٔ زنده ست چو اسفنج .
سیف اسفرنگ .
|| (ص ) پژمرده .(شعوری ). و در جای دیگر به این معنی نیامده و ظاهراً از مجعولات شعوری است ، یا مصحف ابر مرده است .
////////////
اسفنج‌.  ویرا ابر کهن و ابر مرده نیز گویند حیوان دریائیست که چون دست بر وی نهی خود را درکشد وقتی که بمیرد و آب وی را بساحل اندازد و گویند نبات دریائیست و این محقق است و باقی خلاف است و بهترین وی آنست که چون بسوزانند و خاکستر وی در زخمی که در ساعت زده باشند بپاشند خشک بند کند و نیک شود و اگر بیاشامند خون رفتن بازدارد و مجفف اورام بلغمی بود و اگر خاکستر وی بشویند جهت درد چشم سودمند بود و جلای تمام دهد و شیخ الرئیس گوید چون با زفت بسوزانند قطع نفث دم کند و تازه وی مضر باحشا و مصلح وی رب غوره بود یا ریباس و از خواص اسفنج یکی آنست که اگر شراب باب ممزوج بود وی را در آن اندازند آبها جمله بگیرد و اگر خواهند که همچنان مصرف کنند بمقراض پاره کنند که بهاون نتوان کوفت و سبک و متخلخل بود و مطلقا به خانه زنبور ماند و تجویف بسیار در آن بود و بلغت عرب هرشفه خوانند و بپارسی نشکرد گازران و در مصر گازران آن را در آب می‌نهند و آب برمیگیرند و بجامه می‌مالند جهت مهره زدن
صاحب مخزن الادویه می‌نویسد: اسفنج بیونانی صیفونا و بعربی زبد الطری و سحاب البحر و غمامه و غیم و نشافه و صوف الحجامین و هرشفه و بفارسی ابر مرده و ابر کهن و نشکرد گازران و بهندی موابادل و بترکی بلوط نامند.
اختیارات بدیعی
//////////////
اسفنج
بکسر اول و سکون سین مهمله و فتح فا و سکون نون و جیم بیونانی صیفونا و بعربی زبد الطری و سحاب البحر و غماسه و غیم و نشانه و صوف الحجامین و هرشفه و بفارسی ابرمرده و ابر کهن و فشکزد کاذران و بهندی موابادل و بترکی بلوط نامند
ص: 238
ماهیت آن
چیزی است که بر روی سنکهای کنار دریای شور متکون می کردد و چون در آب اندازند آب را نشف می نماید و چون بفشارند آب از ان برمیآید و آن دو قسم می باشد قسمی از ان که متخلخل و سوراخهای آن کشاده و نرم و شبیه بنمد و پر سوراخ است ماده کویند و قسمی که با صلابت و سوراخهای آن صغیر و تنک است نر نامند
طبیعت آن
کرم در اول و خشک در دوم
افعال و خواص و منافع آن
محلل و مجفف قروح و جروح عمیقۀ ثاره و کهنه و اورام بلغمیه و ریشهای کهنه و قاطع نزف الدم و التیام دهندۀ زخمهای کهنه و مفتح افواه عروق چون تازۀ آن را با سرکۀ خالص یا سرکۀ ممزوج به آب یا شراب تر کرده بر جراحت تازه بکذارند التیام دهد و بالخاصیه قطع نزف الدم کند از هر عضوی که باشد ضماد مطبوخ آن با عسل یا با آب خالص جهت التیام زخمها و ذرور خشک آن مجفف قروح عمیقه و همچنین کذاشتن درست خشک آن بر ظاهر جراحت اکرچه بعمق آن نرسد جهت آنکه یا وجود قوت مجففه قوت جاذبۀ آن را نیز هست و سوختۀ آن جهت منع نزف الدم و التیام زخمهای تازه قویتر و ذرور رقازۀ آن بتنهائی یا با پنبه یا با ریشۀ کتان سوخته جهت رمد یابس و جلای بصر و تفتیح افواه عروق مضمومه و جراحات جاسیه و محرق مغسول آن در ادویۀ عین نافع و چون قطعۀ خشک آن را که در ان مطلق تری نباشد یقفر الیهود و یا بزیت آلوده کرده یکسر آن را بآتش برافروزند و سر دیکر را بر موضع قطع یا بط که خون از ان بند نشود بکذارند که حرارت آن بدان موضع برسد و داغ کنند آن را که خاکستر آن بدان ریخته شود در ساعت خون را بند نماید بسبب چسبیدن و کرفتن آن افواه عروق را و همچنین خاکستر سوختۀ چرب نمودۀ آن بروغن زیت که چرب نموده بسوزانند و خاکستر آن را ذرور نمایند و شرب آن جهت نزف الدم خارجی و داخلی مفید و چون قطعه از ان را به قدری که توان فرو برد بخیاطۀ ابریشمی و یا ریسمانی مضبوط بسته بلع نمایند و سر خیاطه را بدست بکیرند و لمحه صبر کنند که جذب رطوبات کرده بالیده کردد بعد از ان خیاطه را بکشند که از کلو بیرون آید بقسمی که کلو نبرد در اخراج زلو و خار که در حلق چسبیده باشد بیعدیل است و چون ریزه ریزه نموده بمقراض و بروغن زیت چرب نموده بکذارند تا موش بخورد می کشد آن را و در مصر کاذران آن را در
ص: 239
آب می خیسانند و آب آن را کرفته بجامه می مالند جهت تصفیۀ آن و گفته اند از خاصیت آن آنست که چون آب را با شراب ممزوج نمایند و اسفنج را در ان بکذارند از هم جدا می کردند مضر احشا مصلح آن آب غوره یا ریباس است و چون خواهند که بیاشامند باید که بسیار ریزه مقرض کرده بیاشامند زیرا که در هاون کوبیده نمی شود و دستور احراق و سحق و غسل و سفید کردن آن در قرابادین ذکر یافت و سنکها که در جوف اسفنج بهم می رسد در طبیعت قریب است بدان و حرارت این از ان کمتر ملطف و مجفف و جالی و مفتت سنک مثانه نزد غیر جالینوس زیرا که او مستبعد می داند نفوذ و رسیدن قوت آن را بمثانه و لیکن مفتت سنک کرده کفته.
مخزن الادویه عقیلی خراسانی
///////////
اِسفَنج‌های دریایی از جانوران آبزی هستند. سه ویژگی مهم اسفنج‌ها اینست که وسیله حرکتی ندارند، ناجنبنده‌اند و شکل معینی ندارند.

اسفنج‌های دریایی از نظر علمی شاخه‌ای از جانوران را تشکیل می‌دهند که اسفنج‌تباران یا روزنک‌تباران (Porifera) نامیده می‌شود. این شاخه، شاخه‌ای از جانوران آبزی غالباً دریازی پالیده‌خوار است که استخوان‌بندی آنها از رشته‌های کلاژنی و سوزنه‌های (spicules) کلسیمی یا سیلیسی تشکیل شده است و یاخته‌های تخصصی آنها به‌صورت بافت سازماندهی نشده است.[۱]

اسفنج‌ها، موجوداتی بی‌مهره هستند که در دریا زندگی می‌کنند. تا قرن گذشته بعضی از مردم اسفنج‌ها را به اشتباه جزو گیاهان می‌دانستند، امّا در اصل اسفنج غذا سازی نمی‌کند و بنابراین اسفنج‌ها در دستهٔ جانوران محسوب می‌شوند. این جانوران از هر لحاظ ساده هستند. اسفنج‌ها به طور کلّی توانایی حرکت ندارند امّا در نمونه‌های نادر توانایی خزیدن دیده می‌شود. این جانوران نه اندامی برای بینایی دارند و نه اندامی برای شنوایی امّا باز هم در نمونه‌های نادر توانایی عکس العمل در برابر نور و روشنایی را دارند.
///////////
الإسفنجيات هي حيوانات تشكل شعبة مستقلة تدعى شعبة المساميات أو الإسفنجيات (الاسم العلمي: Porifera) وهي كائنات بحرية ترشيحية التغذية حيث يتم ضخ الماء إلى داخل المطرس البيولوجي لترشيح الماء واستخلاص دقائق الطعام, ولتتغذى على أونصة واحدة من الطعام, يلزمها أن تمتص قرابة طن من الماء[5].تكون الاسفنجيات عادة الشكل الأبسط للحياة الحيوانية فهي لا تمتلك نسج حقيقية (مثل الأوليات) ولا تمتلك عضلات ولا أعصاب ولا أعضاء داخلية. التشابه بين الاسفنجيات ومستعمرات السوطيات الكاونية choanoflagellates تظهر احتمال حدوث قفزة تطورية من أحاديات الخلايا unicellular إلى متعددات الخلايا multicellular. هناك أكثر من 5000 نوع حديث من الاسفنجيات المعروفة حالياً يمكن ان توجد على أي سطح من المنطقة داخل-مدية intertidal zone إلى أعماق 8500 م (29000 قدم) أو أكثر.مستحاثات الاسفنجيات تعود إلى العهد قبل الكامبري Precambrian، مع ذلك ما تزال هناك أنواع جديدة تكتشف كل يوم.
بنية الاسفنجيات بسيطة : فهي تشكل انبوباً ذو نهاية ملتصقة بصخرة أو أي جسم آخر بينما تبقى النهاية الأخرى ،و تدعى اوسكوليوم osculum، مفتوحة على البيئة المحيطة. باطن الاسفنج spongocoel يتألف من جدران مزودة بثقوب تسمح بمرور الماء إلى الداخل الاسفنجي.
صفات عامة[عدل]
حيوانات غير منتظمة الشكل ذات أجسام رفيعة أو مستعرضة أو قمعية الشكل أو أنبوبية بعضها متفرع والبعض الأخر وحيدة الفرع. وتختلف أيضاً أحجامها فمنها مالا يزيد عن حجم رأس الدبوس ومنها ما يصل قطره إلى ثلاث أقدام كذلك ألوان الإسفنج من الأبيض والرمادي إلى الأصفر والبرتقالي والأحمر والأخضر.
الجسم مثقوب بثقوب أو فتحات عديدة تنتهي إلى حجرات التي من خلالها يمر الماء ومن ثم فقد سميت بالمساميات Porifera.
خلايا الجسم غير متخصصة وتعتمد في وظيفتها كل على الآخر وعلى الرغم من أن الاسفنجيات لها قليل جداً من الخلايا المتخصصة المرتبة في صفوف محددة إلا أنه لا يوجد تنسيق وترابط في الوظائف بين الخلايا المتشابهة وعلى هذا لا تعتبر كأنسجة أصلية.
الخلايا بسيطة في الأسفنج وبدائية, فالكثير من العمليات في الحيوانات العادية غير موجودة في الإسفنج, مثل الهضم ونقل الدم. وإن وجدت فإنها تتم بطريقة بسيطة بحيث لا تحتاج إلى أجهزة معينة[6].
يرى بعض العلماء أن الإسفنج هو أساس لجميع الحيوانات في العالم, ويعود ذلك إلى تكوين البدائي للإسفنج[6].
تحتوي على هيكل من الكالسيوم أو الأشواك السلكية (مادة السليكا) أو الألياف العضوية الإسفنجية
الهضم يتم داخل والحسية والتنفسية والارتباط يكون محدود جداً واستجاباتها للمؤثر الخارجي يكاد يكون محدود أو بطيئ.
التكاثرجنسي ولا جنسي في حالة اللاجنسي يتم بعملية التبرعم Budding أيضاً تظهر منها ظاهرة التعويض والتجديد Regeneration والتكاثر الجنسي ينشأ بتكون الجاميتات ولها يرقة حرة سابحة.
لها يرقة مهدبة تعرف بالامفيبلاستولا Amphiblastula.
مراجع[عدل]
^ مذكور في : نظام معلومات تصنيفية متكاملة — 2004
^ مذكور في : Phylum Porifera Grant, 1836
^ مذكور في : A higher level classification of all living organisms
^ تعديل القيمة في ويكي بيانات"معرف Porifera في موسوعة الحياة". eol.org. اطلع عليه بتاريخ 17 يوليو 2016.
^ فيلم وثائقي (أشكال الحياة), قناة العربية, 13 شعبان 1429 هـ / 18 أغسطس 2008
^ تعدى إلى الأعلى ل: أ ب فيلم وثائقي (أشكال الحياة), قناة العربية, 13 شعبان 1429 هـ / 18 أغسطس 2008
///////////////
به پنجابی موریانو الی:
موریانوالے چوکھے ولگناں والے جنوراں دی اک برادری اے۔ ایہ سادے جنور نیں جنہاں دے دماغ، کن، اکھاں، دل، ریشے تے منہ نہیں ہوندا۔ ایہ سمندراں وج ریندے نیں تے کج سجرے پانی وچ ریندے نیں۔ ایہ اک تھاں تے گڑے ریندے نے ایہناں دے پنڈے وج موریاں ہوندیاں نیں۔ موریاں وچوں پانی لنگدا اے تے ایس وجوں ای اپنی کھان دی شے پھڑ لیندے نیں۔ ایہناں دا کوئی ہاضمے، نس تے خون دا پربندھ نئیں ہوندا۔
//////////////
به سندی اسپنچ:
سپَنج/اِسفَنج: هڪ قسم جي سامونڊي مخلوق، جيڪا گروهن ۾ رهي ٿي. اها سمنڊ جي -تري- ۾ يا سامونڊي پهاڙ جي پاسن کان چنبڙيل هوندي آهي. قدرتي طرح هن جو جسم جيليءَ يا پنير جهڙو کوکلو ٿئي ٿو ۽ وقت اچڻ تي هي خودبخود ٻه اڌ ٿئي ٿو ۽ ٻئي اڌ جدا جدا حيثيت سان وري پاڻ مان ٻيو جسم پيدا ڪن ٿا. اهو جسم سُڪڻ کان پوءِ نرم ۽ سوراخدار ٿي پوندو آهي. جيڪو گهڻن ڪمن ۾ ايندو آهي. هن ۾ پاڻياٺ چهڻ جي گهڻي صلاحيت آهي.
//////////////
به اردو فایلم پوریفیرا :
فایلم پوریفیرا کے جسم میں بہت زیادہ سوراخ ہوتے ہیں جنکی وجہ سے انھیں پوریفیرا کہتے ہیں ۔انھیں سپونج بھی کہا جاتا ہے۔ان کے جسم میں بہت سارے سیل ہوتے ہیں جو ایک دوسرے سے مختلف ہوتے ہیں۔ لیکن یہ سیل آپس میں مل کر ٹشوز نہیں بناتے ہر سیل اپنے طور پر کام کرتا ہے۔سپونج کا جسم مختلف رنگ کا ہوتا ہے۔ لیکن زیادہ تر سبز رنگ کے ہوتے ہیں جو کہ الجی کی وجہ سے ہوتے ہیں الجی اسکے ساتھ ہی رہتا ہے الجی آکسیجن خارج کرتا ہے اعور یہ آکسیجن کو استعمال کرتا ہے۔ اسکے جسم میں بہت سی نالیاں ہوتی ہیں جن میں ہر وقت پانی گزرتا رہتا ہےسپونج اسی پانی کے زریعےخوراک اور آکسیجن حاصل کرتا ہے۔یہ آبی جنور ہیں جو زیادہ تر سمندر میں پاۓ جاتے ہیں مگر بعض صاف پانی میں بھی رہتے ہیں۔ سمندری جانور کی مثال سا ئی کون ہے۔جبکہ صاف پانی میں رہنے والی سپونج کی مثال سپونجیلا کی ہے۔سائی کون اسکا جسم سلیکون سے بنا ہوتا ہے جسکے سبب یہ چمکدار نظر آتا ہے۔یہ لمبی شاخون کی طرح کالونی بنا کر کالونی کی شکل میں رہتے ہیں اسکا جسم لچکدار مفر مضبوط ہوتا ہے۔ یہ کسی چٹان سے جڑا رہتا ہے۔
////////
به آذری:
Süngərlər (lat. Porifera, Spongia) - onurğasız heyvanlar tipi. 8000-ə yaxın növü təsnif edilib. Əksər növləri dənizdə yaşasalar da, bəzi nümayəndələri (məsələn gölsüngəri) Antarktidadan başqa digər materiklərin daxili sularında rast gəlinir.
//////////////
به ترکی:
Süngerler (Porifera), (Latince, porus (delik) ve ferre (taşımak)tan); omurgasız hayvanlar şubesi. Su diplerinde kayalara, hayvan kabuklarına veya zemine yapışarak yaşarlar.
//////////
Sponge
From Wikipedia, the free encyclopedia
This article is about the aquatic animal. For the porous cleaning tool, see Sponge (material). For other uses, seeSponge (disambiguation).
SpongeTemporal range: Ediacaran–Recent
O
S
D
C
P
T
J
K
N
Kingdom:
Phylum:
"Porifera"
Grant, 1836
Classes
·         Calcarea
·         Hexactinellida
·         Demospongiae
·         Homoscleromorpha
Sponges are animals of the phylum Porifera (/pɒˈrɪfərə/; meaning "pore bearer"). They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through them, consisting of jelly-likemesohyl sandwiched between two thin layers of cells. Sponges have unspecialized cells that can transform into other types and that often migrate between the main cell layers and the mesohyl in the process. Sponges do not have nervousdigestive or circulatory systems. Instead, most rely on maintaining a constant water flow through their bodies to obtain food and oxygen and to remove wastes.
Contents
  [show
Overview
Sponge biodiversity andmorphotypes at the lip of a wall site in 60 feet of water. Included are the yellow tube sponge, Aplysina fistularis, the purple vase sponge, Niphates digitalis, the red encrusting sponge,Spiratrella coccinea, and the gray rope sponge, Callyspongia sp.
Sponges are similar to other animals in that they are multicellularheterotrophic, lack cell walls and produce sperm cells. Unlike other animals, they lack truetissues and organs, and have no body symmetry. The shapes of their bodies are adapted for maximal efficiency of water flow through the central cavity, where it deposits nutrients, and leaves through a hole called the osculum. Many sponges have internal skeletons of spongin and/or spicules of calcium carbonate or silicon dioxide. All sponges are sessile aquatic animals. Although there are freshwater species, the great majority are marine (salt water) species, ranging from tidal zones to depths exceeding 8,800 m (5.5 mi).
While most of the approximately 5,000–10,000 known species feed on bacteriaand other food particles in the water, some host photosynthesizing micro-organisms as endosymbionts and these alliances often produce more food and oxygen than they consume. A few species of sponge that live in food-poor environments have become carnivores that prey mainly on small crustaceans.[1]
Most species use sexual reproduction, releasing sperm cells into the water to fertilize ova that in some species are released and in others are retained by the "mother". The fertilized eggs form larvae which swim off in search of places to settle.[2] Sponges are known for regenerating from fragments that are broken off, although this only works if the fragments include the right types of cells. A few species reproduce by budding. When conditions deteriorate, for example as temperatures drop, many freshwater species and a few marine ones produce gemmules, "survival pods" of unspecialized cells that remain dormant until conditions improve and then either form completely new sponges or recolonize the skeletons of their parents.[3]
The mesohyl functions as an endoskeleton in most sponges, and is the only skeleton in soft sponges that encrust hard surfaces such as rocks. More commonly, the mesohyl is stiffened by mineral spicules, by spongin fibers or both. Demosponges use spongin, and in many species, silica spicules and in some species, calcium carbonate exoskeletons. Demosponges constitute about 90% of all known sponge species, including all freshwater ones, and have the widest range of habitats. Calcareous sponges, which have calcium carbonate spicules and, in some species, calcium carbonate exoskeletons, are restricted to relatively shallow marine waters where production of calcium carbonate is easiest.[4] The fragile glass sponges, with "scaffolding" of silica spicules, are restricted to polar regions and the ocean depths where predators are rare. Fossils of all of these types have been found in rocks dated from580 million years ago. In addition Archaeocyathids, whose fossils are common in rocks from530 to 490 million years ago, are now regarded as a type of sponge.
The single-celled Choanoflagellates resemble the choanocyte cells of sponges which are used to drive their water flow systems and capture most of their food. This along with phylogenetic studies of ribosomal molecules have been used as morphological evidence to suggest sponges are the sister group to the rest of animals.[5] Some studies have shown that sponges do not form a monophyletic group, in other words do not include all and only the descendants of a common ancestor. Recent phylogenetic analyses suggest that comb jellies rather than sponges are the sister group to the rest of animals.[6][7][8][9]
The few species of demosponge that have entirely soft fibrous skeletons with no hard elements have been used by humans over thousands of years for several purposes, including as padding and as cleaning tools. By the 1950s, though, these had been overfished so heavily that the industry almost collapsed, and most sponge-like materials are now synthetic. Sponges and their microscopic endosymbionts are now being researched as possible sources of medicines for treating a wide range of diseases. Dolphins have been observed using sponges as tools while foraging.[10]
Distinguishing features
Further information: Cnidaria and Ctenophore
Sponges constitute the phylum Porifera, and have been defined as sessile metazoans (multicelled immobile animals) that have water intake and outlet openings connected by chambers lined with choanocytes, cells with whip-like flagella.[11] However, a few carnivorous sponges have lost these water flow systems and the choanocytes.[12][13] All known living sponges can remold their bodies, as most types of their cells can move within their bodies and a few can change from one type to another.[13][14]
Like cnidarians (jellyfish, etc.) and ctenophores (comb jellies), and unlike all other known metazoans, sponges' bodies consist of a non-living jelly-like mass sandwiched between two main layers of cells.[15][16] Cnidarians and ctenophores have simple nervous systems, and their cell layers are bound by internal connections and by being mounted on a basement membrane (thin fibrous mat, also known as "basal lamina").[16] Sponges have no nervous systems, their middle jelly-like layers have large and varied populations of cells, and some types of cells in their outer layers may move into the middle layer and change their functions.[14]

Sponges[14][15]
Nervous system
No
Yes, simple
Cells in each layer bound together
No, except that Homoscleromorpha have basement membranes.[17]
Yes: inter-cell connections; basement membranes
Number of cells in middle "jelly" layer
Many
Few
Cells in outer layers can move inwards and change functions
Yes
No
Basic structure
Cell types
    Mesohyl
    Pinacocyte
    Choanocyte
    Lophocyte
    Porocyte
    Oocyte
    Archeocyte
    Sclerocyte
    Spicule
    Water flow
Main cell types of Porifera[18]
A sponge's body is hollow and is held in shape by the mesohyl, a jelly-like substance made mainly of collagen and reinforced by a dense network of fibers also made of collagen. The inner surface is covered with choanocytes, cells with cylindrical or conical collars surrounding one flagellum per choanocyte. The wave-like motion of the whip-like flagella drives water through the sponge's body. All sponges have ostia, channels leading to the interior through the mesohyl, and in most sponges these are controlled by tube-like porocytes that form closable inlet valves. Pinacocytes, plate-like cells, form a single-layered external skin over all other parts of the mesohyl that are not covered by choanocytes, and the pinacocytes also digest food particles that are too large to enter the ostia,[14][15]while those at the base of the animal are responsible for anchoring it.[15]
Other types of cell live and move within the mesohyl:[14][15]
·         Lophocytes are amoeba-like cells that move slowly through the mesohyl and secrete collagen fibres.
·         Collencytes are another type of collagen-producing cell.
·         Rhabdiferous cells secrete polysaccharides that also form part of the mesohyl.
·         Oocytes and spermatocytes are reproductive cells.
·         Sclerocytes secrete the mineralized spicules ("little spines") that form the skeletons of many sponges and in some species provide some defense against predators.
·         In addition to or instead of sclerocytes, demosponges have spongocytes that secrete a form of collagen thatpolymerizes into spongin, a thick fibrous material that stiffens the mesohyl.
·         Myocytes ("muscle cells") conduct signals and cause parts of the animal to contract.
·         "Grey cells" act as sponges' equivalent of an immune system.
·         Archaeocytes (or amoebocytes) are amoeba-like cells that are totipotent, in other words each is capable of transformation into any other type of cell. They also have important roles in feeding and in clearing debris that block the ostia.
Glass sponges' syncytia
    Water flow
    Main syncitium
    Spicules
   Choanosyncitium
    and collar bodies
    showing interior
Glass sponges present a distinctive variation on this basic plan. Their spicules, which are made of silica, form a scaffolding-like framework between whose rods the living tissue is suspended like a cobweb that contains most of the cell types.[14] This tissue is a syncytium that in some ways behaves like many cells that share a single external membrane, and in others like a single cell with multiple nuclei. The mesohyl is absent or minimal. The syncytium's cytoplasm, the soupy fluid that fills the interiors of cells, is organized into "rivers" that transport nuclei, organelles ("organs" within cells) and other substances.[20]Instead of choanocytes, they have further syncytia, known as choanosyncytia, which form bell-shaped chambers where water enters via perforations. The insides of these chambers are lined with "collar bodies", each consisting of a collar and flagellum but without a nucleus of its own. The motion of the flagella sucks water through passages in the "cobweb" and expels it via the open ends of the bell-shaped chambers.[14]
Some types of cells have a single nucleus and membrane each, but are connected to other single-nucleus cells and to the main syncytium by "bridges" made of cytoplasm. The sclerocytes that build spicules have multiple nuclei, and in glass sponge larvae they are connected to other tissues by cytoplasm bridges; such connections between sclerocytes have not so far been found in adults, but this may simply reflect the difficulty of investigating such small-scale features. The bridges are controlled by "plugged junctions" that apparently permit some substances to pass while blocking others.[20]
Water flow and body structures
Asconoid
Syconoid
Leuconoid
    Pinacocytes
    Choanocytes
    Mesohyl
    Water flow
Porifera body structures[21]
Most sponges work rather like chimneys: they take in water at the bottom and eject it from the osculum ("little mouth") at the top. Since ambient currents are faster at the top, the suction effect that they produce by Bernoulli's principle does some of the work for free. Sponges can control the water flow by various combinations of wholly or partially closing the osculum and ostia (the intake pores) and varying the beat of the flagella, and may shut it down if there is a lot of sand or silt in the water.[14]
Although the layers of pinacocytes and choanocytes resemble theepithelia of more complex animals, they are not bound tightly by cell-to-cell connections or a basal lamina (thin fibrous sheet underneath). The flexibility of these layers and re-modeling of the mesohyl by lophocytes allow the animals to adjust their shapes throughout their lives to take maximum advantage of local water currents.[22]
The simplest body structure in sponges is a tube or vase shape known as "asconoid", but this severely limits the size of the animal. The body structure is characterized by a stalk-like spongocoel surrounded by a single layer of choanocytes. If it is simply scaled up, the ratio of its volume to surface area increases, because surface increases as the square of length or width while volume increases proportionally to the cube. The amount of tissue that needs food and oxygen is determined by the volume, but the pumping capacity that supplies food and oxygen depends on the area covered by choanocytes. Asconoid sponges seldom exceed 1 mm (0.039 in) in diameter.[14]
Diagram of a syconoid sponge.
Some sponges overcome this limitation by adopting the "syconoid" structure, in which the body wall is pleated. The inner pockets of the pleats are lined with choanocytes, which connect to the outer pockets of the pleats by ostia. This increase in the number of choanocytes and hence in pumping capacity enables syconoid sponges to grow up to a few centimeters in diameter.
The "leuconoid" pattern boosts pumping capacity further by filling the interior almost completely with mesohyl that contains a network of chambers lined with choanocytes and connected to each other and to the water intakes and outlet by tubes. Leuconid sponges grow to over 1 m (3.3 ft) in diameter, and the fact that growth in any direction increases the number of choanocyte chambers enables them to take a wider range of forms, for example "encrusting" sponges whose shapes follow those of the surfaces to which they attach. All freshwater and most shallow-water marine sponges have leuconid bodies. The networks of water passages in glass sponges are similar to the leuconid structure.[14] In all three types of structure the cross-section area of the choanocyte-lined regions is much greater than that of the intake and outlet channels. This makes the flow slower near the choanocytes and thus makes it easier for them to trap food particles.[14] For example, in Leuconia, a small leuconoid sponge about 10 centimetres (3.9 in) tall and 1 centimetre (0.39 in) in diameter, water enters each of more than 80,000 intake canals at 6 cm per minute. However, because Leuconia has more than 2 million flagellated chambers whose combined diameter is much greater than that of the canals, water flow through chambers slows to 3.6 cm per hour, making it easy for choanocytes to capture food. All the water is expelled through a single osculum at about 8.5 cm per second, fast enough to carry waste products some distance away.[23]
    Pinacocyte
    Choanocyte
    Archeocytes and other cells in
    
mesohyl
    Mesohyl
    Spicules
    Seabed / rock
    Water flow
Sponge with calcium carbonate skeleton[14]
Skeleton
In zoology a skeleton is any fairly rigid structure of an animal, irrespective of whether it has joints and irrespective of whether it is biomineralized. The mesohyl functions as an endoskeleton in most sponges, and is the only skeleton in soft sponges that encrust hard surfaces such as rocks. More commonly the mesohyl is stiffened by mineralspicules, by spongin fibers or both. Spicules may be made of silica or calcium carbonate, and vary in shape from simple rods to three-dimensional "stars" with up to six rays. Spicules are produced by sclerocyte cells,[14]and may be separate, connected by joints, or fused.[13]
Some sponges also secrete exoskeletons that lie completely outside their organic components. For example,sclerosponges ("hard sponges") have massive calcium carbonate exoskeletons over which the organic matter forms a thin layer with choanocyte chambers in pits in the mineral. These exoskeletons are secreted by the pinacocytes that form the animals' skins.[14]
Classes
Sponges were traditionally distributed in three classes: calcareous sponges (Calcarea), glass sponges (Hexactinellida) and demosponges (Demospongiae). However, studies have shown that the Homoscleromorpha, a group thought to belong to the Demospongiae, is actually phylogenetically well separated. Therefore, they have recently been recognized as the fourth class of sponges.[24][25]
Sponges are divided into classes mainly according to the composition of their skeletons:[15]

Type of cells[15]
Massive exoskeleton[26]
Body form[15]
Single nucleus, single external membrane
Calcite
May be individual or large masses
Never
Common.
Made of calcite if present.
Asconoid, syconoid, leuconoid or solenoid[27]
Mostly syncytia in all species
Silica
May be individual or fused
Never
Never
Leuconoid
Single nucleus, single external membrane
Silica
In many species
In some species.
Made of
aragonite if present.[13][26]
Leuconoid
Single nucleus, single external membrane
Silica
In many species
Never
Sylleibid or leuconoid
Vital functions
Spongia officinalis, "the kitchen sponge", is dark grey when alive
Movement
Although adult sponges are fundamentally sessile animals, some marine and freshwater species can move across the sea bed at speeds of 1–4 mm (0.039–0.157 in) per day, as a result of amoeba-like movements of pinacocytes and other cells. A few species can contract their whole bodies, and many can close their oscula and ostia. Juveniles drift or swim freely, while adults are stationary.[14]
Respiration, feeding and excretion
Sponges do not have distinct circulatoryrespiratorydigestive, and excretory systems – instead the water flow system supports all these functions. They filter food particles out of the water flowing through them. Particles larger than 50 micrometers cannot enter the ostia and pinacocytes consume them by phagocytosis (engulfing and internal digestion). Particles from 0.5 μm to 50 μm are trapped in the ostia, which taper from the outer to inner ends. These particles are consumed by pinacocytes or by archaeocytes which partially extrude themselves through the walls of the ostia. Bacteria-sized particles, below 0.5 micrometers, pass through the ostia and are caught and consumed bychoanocytes.[14] Since the smallest particles are by far the most common, choanocytes typically capture 80% of a sponge's food supply.[26] Archaeocytes transport food packaged in vesicles from cells that directly digest food to those that do not. At least one species of sponge has internal fibers that function as tracks for use by nutrient-carrying archaeocytes,[14] and these tracks also move inert objects.[15]
Euplectella aspergillum, a glass sponge known as "Venus' Flower Basket"
It used to be claimed that glass sponges could live on nutrients dissolved in sea water and were very averse to silt.[28] However a study in 2007 found no evidence of this and concluded that they extract bacteria and other micro-organisms from water very efficiently (about 79%) and process suspended sediment grains to extract such prey.[29] Collar bodies digest food and distribute it wrapped in vesicles that are transported by dynein "motor" molecules along bundles of microtubules that run throughout the syncytium.[14]
Sponges' cells absorb oxygen by diffusion from water into cells as water flows through body, into which carbon dioxide and other soluble waste products such as ammonia also diffuse. Archeocytes remove mineral particles that threaten to block the ostia, transport them through the mesohyl and generally dump them into the outgoing water current, although some species incorporate them into their skeletons.[14]
Carnivorous sponges
A few species that live in waters where the supply of food particles is very poor prey on crustaceans and other small animals. So far only 137 species have been discovered.[30] Most belong to the family Cladorhizidae, but a few members of the Guitarridae and Esperiopsidae are also carnivores.[31] In most cases little is known about how they actually capture prey, although some species are thought to use either sticky threads or hooked spicules.[31][32] Most carnivorous sponges live in deep waters, up to 8,840 m (5.49 mi),[33] and the development of deep-ocean exploration techniques is expected to lead to the discovery of several more.[14][31] However one species has been found inMediterranean caves at depths of 17–23 m (56–75 ft), alongside the more usual filter feeding sponges. The cave-dwelling predators capture crustaceans under 1 mm (0.039 in) long by entangling them with fine threads, digest them by enveloping them with further threads over the course of a few days, and then return to their normal shape; there is no evidence that they use venom.[33]
Most known carnivorous sponges have completely lost the water flow system and choanocytes. However the genusChondrocladia uses a highly modified water flow system to inflate balloon-like structures that are used for capturing prey.[31][34]
Endosymbionts
Freshwater sponges often host green algae as endosymbionts within archaeocytes and other cells, and benefit from nutrients produced by the algae. Many marine species host other photosynthesizing organisms, most commonlycyanobacteria but in some cases dinoflagellates. Symbiotic cyanobacteria may form a third of the total mass of living tissue in some sponges, and some sponges gain 48% to 80% of their energy supply from these micro-organisms.[14] In 2008 a University of Stuttgart team reported that spicules made of silica conduct light into the mesohyl, where the photosynthesizing endosymbionts live.[35] Sponges that host photosynthesizing organisms are most common in waters with relatively poor supplies of food particles, and often have leafy shapes that maximize the amount of sunlight they collect.[15]
A recently discovered carnivorous sponge that lives near hydrothermal vents hosts methane-eating bacteria, and digests some of them.[15]
"Immune" system
Sponges do not have the complex immune systems of most other animals. However they reject grafts from other species but accept them from other members of their own species. In a few marine species, gray cells play the leading role in rejection of foreign material. When invaded, they produce a chemical that stops movement of other cells in the affected area, thus preventing the intruder from using the sponge's internal transport systems. If the intrusion persists, the grey cells concentrate in the area and release toxins that kill all cells in the area. The "immune" system can stay in this activated state for up to three weeks.[15]
Reproduction
Asexual
The freshwater sponge Spongilla lacustris
Sponges have three asexual methods of reproduction: after fragmentation; bybudding; and by producing gemmules. Fragments of sponges may be detached by currents or waves. They use the mobility of their pinacocytes andchoanocytes and reshaping of the mesohyl to re-attach themselves to a suitable surface and then rebuild themselves as small but functional sponges over the course of several days. The same capabilities enable sponges that have been squeezed through a fine cloth to regenerate.[36] A sponge fragment can only regenerate if it contains both collencytes to produce mesohyl andarcheocytes to produce all the other cell types.[26] A very few species reproduce by budding.[37]
Gemmules are "survival pods" which a few marine sponges and many freshwater species produce by the thousands when dying and which some, mainly freshwater species, regularly produce in autumn. Spongocytes make gemmules by wrapping shells of spongin, often reinforced with spicules, round clusters of archeocytes that are full of nutrients.[38] Freshwater gemmules may also include phytosynthesizing symbionts.[39] The gemmules then become dormant, and in this state can survive cold, drying out, lack of oxygen and extreme variations in salinity.[14] Freshwater gemmules often do not revive until the temperature drops, stays cold for a few months and then reaches a near-"normal" level.[39] When a gemmule germinates, the archeocytes round the outside of the cluster transform into pinacocytes, a membrane over a pore in the shell bursts, the cluster of cells slowly emerges, and most of the remaining archeocytes transform into other cell types needed to make a functioning sponge. Gemmules from the same species but different individuals can join forces to form one sponge.[40] Some gemmules are retained within the parent sponge, and in spring it can be difficult to tell whether an old sponge has revived or been "recolonized" by its own gemmules.[39]
Sexual
Most sponges are hermaphrodites (function as both sexes simultaneously), although sponges have no gonads(reproductive organs). Sperm are produced by choanocytes or entire choanocyte chambers that sink into the mesohyland form spermatic cysts while eggs are formed by transformation of archeocytes, or of choanocytes in some species. Each egg generally acquires a yolk by consuming "nurse cells". During spawning, sperm burst out of their cysts and are expelled via the osculum. If they contact another sponge of the same species, the water flow carries them to choanocytes that engulf them but, instead of digesting them, metamorphose to an ameboid form and carry the sperm through the mesohyl to eggs, which in most cases engulf the carrier and its cargo.[41]
A few species release fertilized eggs into the water, but most retain the eggs until they hatch. There are four types of larvae, but all are balls of cells with an outer layer of cells whose flagellae or cilia enable the larvae to move. After swimming for a few days the larvae sink and crawl until they find a place to settle. Most of the cells transform into archeocytes and then into the types appropriate for their locations in a miniature adult sponge.[41]
Glass sponge embryos start by dividing into separate cells, but once 32 cells have formed they rapidly transform into larvae that externally are ovoid with a band of cilia round the middle that they use for movement, but internally have the typical glass sponge structure of spicules with a cobweb-like main syncitium draped around and between them andchoanosyncytia with multiple collar bodies in the center. The larvae then leave their parents' bodies.[42]
Life cycle
Sponges in temperate regions live for at most a few years, but some tropical species and perhaps some deep-ocean ones may live for 200 years or more. Some calcified demosponges grow by only 0.2 mm (0.0079 in) per year and, if that rate is constant, specimens 1 m (3.3 ft) wide must be about 5,000 years old. Some sponges start sexual reproduction when only a few weeks old, while others wait until they are several years old.[14]
Coordination of activities
Adult sponges lack neurons or any other kind of nervous tissue. However most species have the ability to perform movements that are coordinated all over their bodies, mainly contractions of the pinacocytes, squeezing the water channels and thus expelling excess sediment and other substances that may cause blockages. Some species can contract the osculum independently of the rest of the body. Sponges may also contract in order to reduce the area that is vulnerable to attack by predators. In cases where two sponges are fused, for example if there is a large but still unseparated bud, these contraction waves slowly become coordinated in both of the "Siamese twins". The coordinating mechanism is unknown, but may involve chemicals similar to neurotransmitters.[43] However glass sponges rapidly transmit electrical impulses through all parts of the syncytium, and use this to halt the motion of their flagella if the incoming water contains toxins or excessive sediment.[14] Myocytes are thought to be responsible for closing the osculum and for transmitting signals between different parts of the body.[15]
Sponges contain genes very similar to those that contain the "recipe" for the post-synaptic density, an important signal-receiving structure in the neurons of all other animals. However, in sponges these genes are only activated in "flask cells" that appear only in larvae and may provide some sensory capability while the larvae are swimming. This raises questions about whether flask cells represent the predecessors of true neurons or are evidence that sponges' ancestors had true neurons but lost them as they adapted to a sessile lifestyle.[44]
Ecology
Euplectella aspergillum is a deep ocean glass sponge; seen here at a depth of 2,572 metres (8,438 ft) off the coast of California.
Habitats
Sponges are worldwide in their distribution, living in a wide range of ocean habitats, from the polar regions to the tropics.[26] Most live in quiet, clear waters, because sediment stirred up by waves or currents would block their pores, making it difficult for them to feed and breathe.[28] The greatest numbers of sponges are usually found on firm surfaces such as rocks, but some sponges can attach themselves to soft sediment by means of a root-like base.[45]
Sponges are more abundant but less diverse in temperate waters than in tropical waters, possibly because organisms that prey on sponges are more abundant in tropical waters.[46] Glass sponges are the most common in polar waters and in the depths of temperate and tropical seas, as their very porous construction enables them to extract food from these resource-poor waters with the minimum of effort. Demosponges and calcareous sponges are abundant and diverse in shallower non-polar waters.[47]
The different classes of sponge live in different ranges of habitat:

Water type[15]
Depth[15]
Type of surface[15]
Marine
less than 100 m (330 ft)
Hard
Marine
Deep
Soft or firmsediment
Marine, brackish; and about 150 freshwater species[14]
Inter-tidal to abyssal;[15] a carnivorous demosponge has been found at 8,840 m (5.49 mi)[33]
Any
As primary producers
Sponges with photosynthesizing endosymbionts produce up to three times more oxygen than they consume, as well as more organic matter than they consume. Such contributions to their habitats' resources are significant along Australia'sGreat Barrier Reef but relatively minor in the Caribbean.[26]
Defenses
Holes made by clionaid sponge (producing the trace Entobia) after the death of a modern bivalve shell of species Mercenaria mercenaria, fromNorth Carolina
Close-up of the sponge boringEntobia in a modern oyster valve. Note the chambers which are connected by short tunnels.
Many sponges shed Sponge spicules, forming a dense carpet several meters deep that keeps away echinoderms which would otherwise prey on the sponges.[26] They also produce toxins that prevent other sessile organisms such as bryozoans or sea squirts from growing on or near them, making sponges very effective competitors for living space. One of many examples includes ageliferin.
A few species, the Caribbean fire sponge Tedania ignis, cause a severe rash in humans who handle them.[14] Turtles and some fish feed mainly on sponges. It is often said that sponges produce chemical defenses against such predators.[14] However an experiment showed that there is no relationship between the toxicity of chemicals produced by sponges and how they taste to fish, which would diminish the usefulness of chemical defenses as deterrents. Predation by fish may even help to spread sponges by detaching fragments.[15]
Glass sponges produce no toxic chemicals, and live in very deep water where predators are rare.[28]
Predation
Sponge flies, also known as spongilla-flies (NeuropteraSisyridae), are specialist predators of freshwater sponges. The female lays her eggs on vegetation overhanging water. The larvae hatch and drop into the water where they seek out sponges to feed on. They use their elongated mouthparts to pierce the sponge and suck the fluids within. The larvae of some species cling to the surface of the sponge while others take refuge in the sponge's internal cavities. The fully grown larvae leave the water and spin a cocoon in which to pupate.[48]
Bioerosion
The Caribbean chicken-liver sponge Chondrilla nucula secretes toxins that kill coral polyps, allowing the sponges to grow over the coral skeletons.[14] Others, especially in the family Clionaidae, use corrosive substances secreted by their archeocytes to tunnel into rocks, corals and the shells of dead mollusks.[14] Sponges may remove up to 1 m (3.3 ft) per year from reefs, creating visible notches just below low-tide level.[26]
Diseases
Caribbean sponges of the genus Aplysina suffer from Aplysina red band syndrome. This causes Aplysina to develop one or more rust-colored bands, sometimes with adjacent bands of necrotic tissue. These lesions may completely encircle branches of the sponge. The disease appears to be contagious and impacts approximately 10 percent of A. cauliformis on Bahamian reefs.[49] The rust-colored bands are caused by a cyanobacterium, but it is unknown whether this organism actually causes the disease.[49][50]
Collaboration with other organisms
In addition to hosting photosynthesizing endosymbionts,[14] sponges are noted for their wide range of collaborations with other organisms. The relatively large encrusting sponge Lissodendoryx colombiensis is most common on rocky surfaces, but has extended its range into seagrass meadows by letting itself be surrounded or overgrown by seagrass sponges, which are distasteful to the local starfish and therefore protect Lissodendoryx against them; in return the seagrass sponges get higher positions away from the sea-floor sediment.[51]
Shrimps of the genus Synalpheus form colonies in sponges, and each shrimp species inhabits a different sponge species, making Synalpheus one of the most diverse crustacean genera. Specifically, Synalpheus regalis utilizes the sponge not only as a food source, but also as a defense against other shrimp and predators.[52] As many as 16,000 individuals inhabit a single loggerhead sponge, feeding off the larger particles that collect on the sponge as it filters the ocean to feed itself.[53]
Evolutionary history
Fossil record
Raphidonema faringdonense, a fossil sponge from the Cretaceous of England.
1
2
3
4
5
6
7
1: Gap  2: Central cavity 3 Internal wall  4: Pore (all walls have pores) 5 Septum  6 Outer wall 7 Holdfast
Archaeocyathidstructure
24-isopropylcholestane is a stable derivative of 24-isopropylcholesterol, which is said to be produced by demosponges but not byeumetazoans ("true animals", i.e. cnidarians andbilaterians). Since choanoflagellates are thought to be animals' closest single-celled relatives, a team of scientists examined the biochemistry andgenes of one choanoflagellate species. They concluded that this species could not produce 24-isopropylcholesterol but that investigation of a wider range of choanoflagellates would be necessary in order to prove that the fossil 24-isopropylcholestane could only have been produced by demosponges.[54] Although a previous publication reported traces of the chemical 24-isopropylcholestane in ancient rocks dating to 1,800 million years ago,[55] recent research using a much more accurately dated rock series has revealed that these biomarkers only appear before the end of the Marinoan glaciation approximately635 million years ago,[56] and that "Biomarker analysis has yet to reveal any convincing evidence for ancient sponges pre-dating the first globally extensive Neoproterozoic glacial episode (the Sturtian, ~713 million years ago in Oman)". Nevertheless, this 'sponge biomarker' could have other sources – such as marine algae — so may not constrain the origin of Porifera.[57]
Although molecular clocks and biomarkers suggest sponges existed well before the Cambrian explosion of life, silicaspicules like those of demosponges are absent from the fossil record until the Cambrian,[58] although one unsubstantiated report exists of spicules in rocks dated around 750 million years ago,[59] although this appears unlikely based on the above reference. Well-preserved fossil sponges from about 580 million years ago in the Ediacaran period have been found in the Doushantuo Formation. These fossils, which include spicules, pinacocytesporocytes,archeocytessclerocytes and the internal cavity, have been classified as demosponges. Fossils of glass sponges have been found from around 540 million years ago in rocks in Australia, China and Mongolia.[60] Early Cambrian sponges from Mexico belonging to the genus Kiwetinokia show evidence of fusion of several smaller spicules to form a single large spicule.[61] Calcium carbonate spicules of calcareous sponges have been found in Early Cambrian rocks from about 530 to 523 million years ago in Australia. Other probable demosponges have been found in the Early CambrianChengjiang fauna, from 525 to 520 million years ago.[62] Freshwater sponges appear to be much younger, as the earliest known fossils date from the Mid-Eocene period about 48 to 40 million years ago.[60] Although about 90% of modern sponges are demosponges, fossilized remains of this type are less common than those of other types because their skeletons are composed of relatively soft spongin that does not fossilize well.[63] Earliest sponge symbionts are known from the early Silurian.[64]
Archaeocyathids, which some classify as a type of coralline sponge, are common in the Cambrian period from about530 million years ago, but apparently died out by the end of the Cambrian 490 million years ago.[62]
Family tree
A choanoflagellate


Simplified family tree showing Homoscleromorpha
as closest to more complex animals
[66]
In the 1990s sponges were widely regarded as a monophyleticgroup, in other words all of them descended from a common ancestor that was itself a sponge, and as the "sister-group" to all other metazoans (multi-celled animals), which themselves form a monophyletic group. On the other hand, some 1990s analyses also revived the idea that animals' nearest evolutionary relatives are choanoflagellates, single-celled organisms very similar to sponges'choanocytes – which would imply that most Metazoa evolved from very sponge-like ancestors and therefore that sponges may not be monophyletic, as the same sponge-like ancestors may have given rise both to modern sponges and to non-sponge members of Metazoa.[65]
Analyses since 2001 have concluded that Eumetazoa(more complex than sponges) are more closely related to particular groups of sponges than to the rest of the sponges. Such conclusions imply that sponges are not monophyletic, because the last common ancestor of all sponges would also be a direct ancestor of the Eumetazoa, which are not sponges. A study in 2001 based on comparisons of ribosome DNA concluded that the most fundamental division within sponges was between glass sponges and the rest, and that Eumetazoa are more closely related to Calcareous sponges, those with calcium carbonate spicules, than to other types of sponge.[65] In 2007 one analysis based on comparisons of RNA and another based mainly on comparison of spicules concluded that demosponges and glass sponges are more closely related to each other than either is to calcareous sponges, which in turn are more closely related to Eumetazoa.[60][67]
Other anatomical and biochemical evidence links the Eumetazoa with Homoscleromorpha, a sub-group of demosponges. A comparison in 2007 of nuclear DNA, excluding glass sponges and comb jellies, concluded that:Homoscleromorpha are most closely related to Eumetazoa; calcareous sponges are the next closest; the other demosponges are evolutionary "aunts" of these groups; and the chancelloriids, bag-like animals whose fossils are found in Cambrian rocks, may be sponges.[66] The sperm of Homoscleromorpha share with those of Eumetazoa features that those of other sponges lack. In both Homoscleromorpha and Eumetazoa layers of cells are bound together by attachment to a carpet-like basal membrane composed mainly of "type IV" collagen, a form of collagen not found in other sponges – although the spongin fibers that reinforce the mesohyl of all demosponges is similar to "type IV" collagen.[17]
https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Bathocyroe_fosteri.jpg/220px-Bathocyroe_fosteri.jpg
The analyses described above concluded that sponges are closest to the ancestors of all Metazoa, in other words of all multi-celled animals including both sponges and more complex groups. However, another comparison in 2008 of 150 genes in each of 21 genera, ranging from fungi to humans but including only two species of sponge, suggested that comb jellies (ctenophora) are the most basal lineage of the Metazoa included in the sample. If this is correct, either modern comb jellies developed their complex structures independently of other Metazoa, or sponges' ancestors were more complex and all known sponges are drastically simplified forms. The study recommended further analyses using a wider range of sponges and other simple Metazoa such as Placozoa.[68] The results of such an analysis, published in 2009, suggest that a return to the previous view may be warranted. 'Family trees' constructed using a combination of all available data – morphological, developmental and molecular – concluded that the sponges are in fact a monophyletic group, and with the cnidarians form the sister group to the bilaterians.[69]
Archaeocyathids are very common fossils in rocks from the Early Cambrian about 530 to 520 million years ago but are not found after the Late Cambrian. It has been suggested that they were produced by: sponges; cnidariansalgae;foraminiferans; a completely separate phylum of animals, Archaeocyatha; or even a completely separate kingdom of life, labeled Archaeata or Inferibionta. Since the 1990s archaeocyathids have been regarded as a distinctive group of sponges.[70]
https://upload.wikimedia.org/wikipedia/en/thumb/8/82/Halkieriid_sclerite_structure_300.png/200px-Halkieriid_sclerite_structure_300.png
= skin
= flesh
https://upload.wikimedia.org/wikipedia/en/thumb/8/82/Halkieriid_sclerite_structure_300.png/200px-Halkieriid_sclerite_structure_300.png
Halkieriid sclerite structure[71]
It is difficult to fit chancelloriids into classifications of sponges or more complex animals. An analysis in 1996 concluded that they were closely related to sponges on the grounds that the detailed structure of chancellorid sclerites ("armor plates") is similar to that of fibers of spongin, a collagen protein, in modern keratose (horny) demosponges such as Darwinella.[72] However another analysis in 2002 concluded that chancelloriids are not sponges and may be intermediate between sponges and more complex animals, among other reasons because their skins were thicker and more tightly connected than those of sponges.[73] In 2008 a detailed analysis of chancelloriids' sclerites concluded that they were very similar to those of halkieriids, mobile bilaterian animals that looked like slugs inchain mail and whose fossils are found in rocks from the very Early Cambrian to the Mid Cambrian. If this is correct, it would create a dilemma, as it is extremely unlikely that totally unrelated organisms could have developed such similar sclerites independently, but the huge difference in the structures of their bodies makes it hard to see how they could be closely related.[71]
Taxonomy
Linnaeus, who classified most kinds of sessile animals as belonging to the order Zoophyta in the class Vermes, mistakenly identified the genus Spongia as plants in the order Algae.[74] For a long time thereafter sponges were assigned to a separate subkingdom, Parazoa ("beside the animals"), separate from the Eumetazoa which formed the rest of the kingdom Animalia.[70] They are now classified as a paraphyletic phylum, from which the higher animals have evolved.[75]
The phylum Porifera is further divided into classes mainly according to the composition of their skeletons:[13][26]
·         Hexactinellida (glass sponges) have silicate spicules, the largest of which have six rays and may be individual or fused.[13] The main components of their bodies are syncytia in which large numbers of cell share a single externalmembrane.[26]
·         Calcarea have skeletons made of calcite, a form of calcium carbonate, which may form separate spicules or large masses. All the cells have a single nucleus and membrane.[26]
·         Most Demospongiae have silicate spicules or spongin fibers or both within their soft tissues. However a few also have massive external skeletons made of aragonite, another form of calcium carbonate.[13][26] All the cells have a single nucleus and membrane.[26]
·         Archeocyatha are known only as fossils from the Cambrian period.[70]
In the 1970s, sponges with massive calcium carbonate skeletons were assigned to a separate class, Sclerospongiae, otherwise known as "coralline sponges".[76] However, in the 1980s it was found that these were all members of either the Calcarea or the Demospongiae.[77]
So far scientific publications have identified about 9,000 poriferan species,[26] of which: about 400 are glass sponges; about 500 are calcareous species; and the rest are demosponges.[14] However some types of habitat, vertical rock and cave walls and galleries in rock and coral boulders, have been investigated very little, even in shallow seas.[26]
Use
By dolphins
A report in 1997 described use of sponges as a tool by bottlenose dolphins in Shark Bay in Western Australia. A dolphin will attach a marine sponge to its rostrum, which is presumably then used to protect it when searching for food in the sandy sea bottom.[78] The behavior, known as sponging, has only been observed in this bay, and is almost exclusively shown by females. A study in 2005 concluded that mothers teach the behavior to their daughters, and that all the sponge-users are closely related, suggesting that it is a fairly recent innovation.[10]
By humans
Main article: Sea sponge aquaculture
https://upload.wikimedia.org/wikipedia/en/thumb/6/61/SpongesTarponSprings.jpg/220px-SpongesTarponSprings.jpg
Natural sponges in Tarpon Springs,Florida
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Sponges.JPG/220px-Sponges.JPG
Display of natural sponges for sale on Kalymnos in Greece
Skeleton
Main article: Sponge (material)
The calcium carbonate or silica spicules of most sponge genera make them too rough for most uses, but two genera, Hippospongia and Spongia, have soft, entirely fibrous skeletons. Early Europeans used soft sponges for many purposes, including padding for helmets, portable drinking utensils and municipal water filters. Until the invention of synthetic sponges, they were used as cleaning tools, applicators for paints and ceramic glazes and discreetcontraceptives. However, by the mid-20th century, over-fishing brought both the animals and the industry close to extinction.[79] See also sponge diving.
Many objects with sponge-like textures are now made of substances not derived from poriferans. Synthetic sponges include personal and householdcleaning toolsbreast implants,[80] and contraceptive sponges.[81] Typical materials used are cellulose foam, polyurethane foam, and less frequently,silicone foam.
The luffa "sponge", also spelled loofah, which is commonly sold for use in the kitchen or the shower, is not derived from an animal but mainly from the fibrous "skeleton" of the sponge gourd (Luffa aegyptiacaCucurbitaceae).[82]
Antibiotic compounds
Sponges have medicinal potential due to the presence in sponges themselves or their microbial symbionts of chemicals that may be used to control virusesbacteriatumors and fungi.[83][84]
Other biologically active compounds
Main article: Sponge isolates
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Halichondria_and_Eribulin.jpg/170px-Halichondria_and_Eribulin.jpg
Halichondria produces theeribulin precursorhalichondrin B
Lacking any protective shell or means of escape, sponges have evolved to synthesize a variety of unusual compounds. One such class is the oxidized fatty acid derivatives called oxylipins. Members of this family have been found to have anti-cancer, anti-bacterial and anti-fungal properties. One example isolated from the Okinawan plakortissponges, plakoridine A, has shown potential as a cytotoxin to murine lymphoma cells.[85][86]
See also
·         https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Yellow.tang.arp.jpg/32px-Yellow.tang.arp.jpgMarine Life portal
·         iconAnimals portal
·         Sponge reef
·         Sponge Reef Project
References
1.     Jump up^ Vacelet & Duport 2004, pp. 179–190.
2.     Jump up^ Bergquist 1978, pp. 183–185.
3.     Jump up^ Bergquist 1978, pp. 120–127.
4.     Jump up^ Bergquist 1978, p. 179.
5.     Jump up^ A. G. Collins (December 1998). "Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence". Proceedings of the National Academy of Sciences of the United States of America 95 (26): 15458–15463.doi:10.1073/pnas.95.26.15458PMID 9860990.
6.     Jump up^ Casey W. Dunn, Andreas Hejnol, David Q. Matus, Kevin Pang, William E. Browne, Stephen A. Smith, Elaine Seaver, Greg W. Rouse, Matthias Obst, Gregory D. Edgecombe, Martin V. Sorensen, Steven H. D. Haddock, Andreas Schmidt-Rhaesa, Akiko Okusu, Reinhardt Mobjerg Kristensen, Ward C. Wheeler, Mark Q. Martindale & Gonzalo Giribet (April 2008). "Broad phylogenomic sampling improves resolution of the animal tree of life".Nature 452 (7188): 745–749. doi:10.1038/nature06614PMID 18322464.
7.     Jump up^ Andreas Hejnol, Matthias Obst, Alexandros Stamatakis, Michael Ott, Greg W. Rouse, Gregory D. Edgecombe, Pedro Martinez, Jaume Baguna, Xavier Bailly, Ulf Jondelius, Matthias Wiens, Werner E. G. Muller, Elaine Seaver, Ward C. Wheeler, Mark Q. Martindale, Gonzalo Giribet & Casey W. Dunn (December 2009). "Assessing the root of bilaterian animals with scalable phylogenomic methods". Proceedings of the Royal Society B: Biological Sciences 276 (1677): 4261–4270. doi:10.1098/rspb.2009.0896.PMC 2817096PMID 19759036.
8.     Jump up^ Joseph F. Ryan, Kevin Pang, Christine E. Schnitzler, Anh-Dao Nguyen, R. Travis Moreland, David K. Simmons, Bernard J. Koch, Warren R. Francis, Paul Havlak, Stephen A. Smith, Nicholas H. Putnam, Steven H. D. Haddock, Casey W. Dunn, Tyra G. Wolfsberg, James C. Mullikin, Mark Q. Martindale & Andreas D. Baxevanis (December 2013). "The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution".Science 342 (6164): 1242592. doi:10.1126/science.1242592PMC 3920664.PMID 24337300.
9.     Jump up^ Leonid L. Moroz, Kevin M. Kocot, Mathew R. Citarella, Sohn Dosung, Tigran P. Norekian, Inna S. Povolotskaya, Anastasia P. Grigorenko, Christopher Dailey, Eugene Berezikov, Katherine M. Buckley, Andrey Ptitsyn, Denis Reshetov, Krishanu Mukherjee, Tatiana P. Moroz, Yelena Bobkova, Fahong Yu, Vladimir V. Kapitonov, Jerzy Jurka, Yuri V. Bobkov, Joshua J. Swore, David O. Girardo, Alexander Fodor, Fedor Gusev, Rachel Sanford, Rebecca Bruders, Ellen Kittler, Claudia E. Mills, Jonathan P. Rast, Romain Derelle, Victor V. Solovyev, Fyodor A. Kondrashov, Billie J. Swalla, Jonathan V. Sweedler, Evgeny I. Rogaev, Kenneth M. Halanych & Andrea B. Kohn (June 2014). "The ctenophore genome and the evolutionary origins of neural systems". Nature 510 (7503): 109–114.doi:10.1038/nature13400PMC 4337882PMID 24847885.
10.  Jump up to:a b Krutzen M; Mann J; Heithaus M.R.; Connor R. C; Bejder L; Sherwin W.B. (2005)."Cultural transmission of tool use in bottlenose dolphins"Proceedings of the National Academy of Sciences 102 (25): 8939–8943. doi:10.1073/pnas.0500232102.PMC 1157020PMID 15947077.. News report at Dolphin Moms Teach Daughters to Use Tools, publisher National Geographic).
11.  Jump up^ Bergquist 1978, p. 29.
12.  Jump up^ Bergquist 1978, p. 39.
13.  Jump up to:a b c d e f g Hooper, J. N. A., Van Soest, R. W. M., and Debrenne, F. (2002). "Phylum Porifera Grant, 1836". In Hooper, J. N. A.; Van Soest, R. W. M. Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer Academic/Plenum. pp. 9–14.ISBN 978-0-306-47260-2.
14.  Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Ruppert, Fox & Barnes 2004, pp. 76–97
15.  Jump up to:a b c d e f g h i j k l m n o p q r s t Bergquist, P. R., (1998). "Porifera". In Anderson, D.T.Invertebrate Zoology. Oxford University Press. pp. 10–27. ISBN 0-19-551368-1.
16.  Jump up to:a b c Hinde, R. T., (1998). "The Cnidaria and Ctenophora". In Anderson, D.T. Invertebrate Zoology. Oxford University Press. pp. 28–57. ISBN 0-19-551368-1.
17.  Jump up to:a b Exposito, J-Y., Cluzel, C., Garrone, R., and Lethias, C. (2002). "Evolution of collagens". The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 268 (3): 302–316. doi:10.1002/ar.10162PMID 12382326.
18.  Jump up^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). Invertebrate Zoology (7th ed.). Brooks / Cole. p. 82. ISBN 0030259827.
19.  Jump up^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). Invertebrate Zoology (7th ed.). Brooks / Cole. p. 83. ISBN 0030259827. Fig. 5-7
20.  Jump up to:a b Leys, S. P. (2003). "The significance of syncytial tissues for the position of the Hexactinellida in the Metazoa". Integrative and Comparative Biology 43 (1): 19–27.doi:10.1093/icb/43.1.19PMID 21680406.
21.  Jump up^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). Invertebrate Zoology (7th ed.). Brooks / Cole. p. 78. ISBN 0030259827.
23.  Jump up^ C. Hickman, C .P. (Jr.), Roberts, L. S., and Larson, A. (2001). Integrated Principles of Zoology (11 ed.). New York: McGraw-Hill. p. 247. ISBN 978-0-07-290961-6.
24.  Jump up^ Gazave, E; Lapébie, P; Renard, E; Vacelet, J; Rocher, C; Ereskovsky, AV; Lavrov, DV; Borchiellini, C (Dec 2010). "Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (porifera, homoscleromorpha)". PLOS ONE 5 (12): e14290.doi:10.1371/journal.pone.0014290PMC 3001884PMID 21179486.
25.  Jump up^ Gazave, E.; Lapébie, P.; Ereskovsky, A.; Vacelet, J.; Renard, E.; Cárdenas, P.; Borchiellini, C. (2012). "No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera". Hydrobiologia 687: 3–10. doi:10.1007/s10750-011-0842-x.
26.  Jump up to:a b c d e f g h i j k l m n o Bergquist, P. R. (2001). "Porifera (Sponges)". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi:10.1038/npg.els.0001582.
27.  Jump up^ Cavalcanti, F. F.; Klautau, M. (2011). "Solenoid: a new aquiferous system to Porifera".Zoomorphology 130: 255–260. doi:10.1007/s00435-011-0139-7.
28.  Jump up to:a b c Krautter, M. (1998). "Ecology of siliceous sponges: Application to the environmental interpretation of the Upper Jurassic sponge facies (Oxfordian) from Spain" (PDF).Cuadernos de Geología Ibérica 24: 223–239. Archived from the original (PDF) on March 19, 2009. Retrieved November 10, 2008.
29.  Jump up^ Yahel, G., Whitney, F., Reiswig, H. M., Eerkes-Medrano, D. I., and Leys, S.P. (2007). "In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible". Limnology and Oceanography 52(1): 428–440. doi:10.4319/lo.2007.52.1.0428.
30.  Jump up^ "4 new species of 'killer' sponges discovered off Pacific coast"CBC News. April 19, 2014. Archived from the original on April 19, 2014. Retrieved September 4, 2014.
32.  Jump up^ Watling, L. (2007). "Predation on copepods by an Alaskan cladorhizid sponge". Journal of the Marine Biological Association of the United Kingdom 87 (6): 1721–1726.doi:10.1017/S0025315407058560.
33.  Jump up to:a b c Vacelet, J. & Boury-Esnault, N. (1995). "Carnivorous sponges". Nature 373 (6512): 333–335. doi:10.1038/373333a0.
34.  Jump up^ Vacelet, J. & Kelly, M. (2008). "New species from the deep Pacific suggest that carnivorous sponges date back to the Early Jurassic". Nature Precedings.doi:10.1038/npre.2008.2327.1.
35.  Jump up^ News report at Brümmer, F., Pfannkuchen, M., Baltz, A., Hauser, T., and Thiel, V. (2008). "Light inside sponges". Journal of Experimental Marine Biology and Ecology 367 (2): 61–64. doi:10.1016/j.jembe.2008.06.036. . News report at Walker, Matt (November 10, 2008). "Nature's 'fibre optics' experts"BBC NewsArchived from the original on December 17, 2008. Retrieved November 10, 2008.
37.  Jump up^ Ruppert, Fox & Barnes 2004, pp. 90–94.
38.  Jump up^ Ruppert, Fox & Barnes 2004, pp. 87–88.
39.  Jump up to:a b c Smith, D. G. & Pennak, R. W. (2001). Pennak's Freshwater Invertebrates of the United States: Porifera to Crustacea (4 ed.). John Wiley and Sons. pp. 47–50. ISBN 0-471-35837-1.
40.  Jump up^ Ruppert, Fox & Barnes 2004, pp. 89–90
42.  Jump up^ Leys, S., Cheung, E., and Boury-Esnault, N. (2006). "Embryogenesis in the glass sponge Oopsacas minuta: Formation of syncytia by fusion of blastomeres". Integrative and Comparative Biology 46 (2): 104–117. doi:10.1093/icb/icj016PMID 21672727.
43.  Jump up^ Nickel, M. (2004). "Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae)". Journal of Experimental Biology 207 (Pt 26): 4515–4524. doi:10.1242/jeb.01289PMID 15579547.
44.  Jump up^ Sakarya; O.; Armstrong; K. A.; Adamska; M.; Adamski; M.; Wang (2007). Vosshall, Leslie, ed. "A Post-Synaptic Scaffold at the Origin of the Animal Kingdom"PLOS ONE2 (6): e506. doi:10.1371/journal.pone.0000506PMC 1876816PMID 17551586.
45.  Jump up^ Weaver, James C.; Aizenberg, Joanna; Fantner, Georg E.; Kisailus, David; Woesz, Alexander; Allen, Peter; Fields, Kirk; Porter, Michael J.; Zok, Frank W.; Hansma, Paul K.; Fratzl, Peter; Morse, Daniel E. (2007). "Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum". Journal of Structural Biology158 (1): 93–106. doi:10.1016/j.jsb.2006.10.027PMID 17175169.
46.  Jump up^ Ruzicka, R. & Gleason, D. F. (2008). "Latitudinal variation in spongivorous fishes and the effectiveness of sponge chemical defenses" (PDF)Oecologia 154 (4): 785–794.doi:10.1007/s00442-007-0874-0PMID 17960425. Retrieved November 11, 2008.
47.  Jump up^ Gage & Tyler 1996, pp. 91–93
48.  Jump up^ Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. Greenwood Publishing GroupISBN 978-0-313-33922-6.
49.  Jump up to:a b Gochfeld, DJ; Easson, CG; Slattery, M; Thacker, RW; Olson, JB (2012). "Population Dynamics of a Sponge Disease on Caribbean Reefs". In: Steller D, Lobel L, eds. Diving for Science 2012. Proceedings of the American Academy of Underwater Sciences 31st Symposium. Retrieved November 17, 2013.
50.  Jump up^ Olson, J. B., Gochfeld, D. J., and Slattery, M. (2006). "Aplysina red band syndrome: a new threat to Caribbean sponges". Diseases of aquatic organisms 71 (2): 163–8.doi:10.3354/dao071163PMID 16956064. News report at New disease threatens sponges[dead link] (Practical Fishkeeping)
51.  Jump up^ Wulff, J. L (2008). "Collaboration among sponge species increases sponge diversity and abundance in a seagrass meadow". Marine Ecology 29 (2): 193–204. doi:10.1111/j.1439-0485.2008.00224.x.
53.  Jump up^ Murphy 2002, p. 51
54.  Jump up^ Kodner, R. B., Summons, R. E., Pearson, A., King, N., and Knoll, A. H. (2008). "Sterols in a unicellular relative of the metazoans". Proceedings of the National Academy of Sciences 105 (29): 9897–9902. doi:10.1073/pnas.0803975105PMC 2481317.PMID 18632573.
55.  Jump up^ Nichols, S. & Wörheide, G. (2005). "Sponges: New Views of Old Animals". Integrative and Comparative Biology 45 (2): 333–334. doi:10.1093/icb/45.2.333.PMID 21676777.
56.  Jump up^ Love, G.D., Grosjean, E., Stalvies, C., Fike, D.A., Grotzinger, J.P., Bradley, A.S., Kelly, A.E., Bhatia, M., Meredith, W., Snape, C.E., Bowring, S.A., Condon, D.J., and Summons, R.E. (2009). "Fossil steroids record the appearance of Demospongiae during the Cryogenian period". Nature 457 (7230): 718–721. doi:10.1038/nature07673.PMID 19194449.
57.  Jump up^ Antcliffe, J. B. (2013). Stouge, Svend, ed. "Questioning the evidence of organic compounds called sponge biomarkers". Palaeontology 56: 917–925.doi:10.1111/pala.12030.
58.  Jump up^ Sperling, E.A., Robinson, J.M., Pisani, D., and Peterson K.J. (2010). "Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules". Geobiology 8 (1): 24–36. doi:10.1111/j.1472-4669.2009.00225.xPMID 19929965.
59.  Jump up^ Reitner, J. & Wörheide, G. (2002). "Non-Lithistid Fossil Demospongiae – Origins of their Palaeobiodiversity and Highlights in History of Preservation". In Hooper, J. N. A. & Van Soest, R. W. M. Systema Porifera: A Guide to the Classification of Sponges (PDF). New York: Kluwer Academic Plenum. Retrieved November 4, 2008.
60.  Jump up to:a b c Müller, W. E. G., Li, J., Schröder, H. C., Qiao, L., and Wang, X. (2007). "The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review". Biogeosciences 4 (2): 219–232.doi:10.5194/bg-4-219-2007.
61.  Jump up^ McMenamin, M. A. S. (2008). "Early Cambrian sponge spicules from the Cerro Clemente and Cerro Rajón, Sonora, México". Geologica Acta 6 (4): 363–367.
62.  Jump up to:a b Li, C-W., Chen, J-Y., and Hua, T-E. (1998). "Precambrian Sponges with Cellular Structures". Science 279 (5352): 879–882. doi:10.1126/science.279.5352.879.PMID 9452391.
63.  Jump up^ "Demospongia"University of California Museum of PaleontologyArchived from the original on October 18, 2013. Retrieved November 27, 2008.
64.  Jump up^ Vinn, O; Wilson, M.A.; Toom, U.; Mõtus, M.-A. (2015). "Earliest known rugosan-stromatoporoid symbiosis from the Llandovery of Estonia (Baltica)". Palaeogeography Palaeoclimatology Palaeoecology 31: 1–5. doi:10.1016/j.palaeo.2015.04.023. Retrieved2015-06-18.
65.  Jump up to:a b c Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet J., and Le Parco, Y. (2001). "Sponge paraphyly and the origin of Metazoa". Journal of Evolutionary Biology14 (1): 171–179. doi:10.1046/j.1420-9101.2001.00244.x.
66.  Jump up to:a b Sperling, E.A.; Pisani, D.; Peterson, K.J. (2007). "Poriferan paraphyly and its implications for Precambrian paleobiology" (PDF). Journal of the Geological Society of London 286: 355–368. doi:10.1144/SP286.25Archived from the original on December 20, 2009. Retrieved November 4, 2008.
67.  Jump up^ Medina, M., Collins, A. G., Silberman, J. D., and Sogin, M. L. (2001). "Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA". Proceedings of the National Academy of Sciences 98 (17): 9707–9712.doi:10.1073/pnas.171316998PMC 55517PMID 11504944.
68.  Jump up^ Dunn, Casey W.; Hejnol, Andreas; Matus, David Q.; Pang, Kevin; Browne, William E.; Smith, Stephen A.; Seaver, Elaine; Rouse, Greg W.; Obst, Matthias; Edgecombe, Gregory D.; Sørensen, Martin V.; Haddock, Steven H. D.; Schmidt-Rhaesa, Andreas; Okusu, Akiko; Møbjerg Kristensen, Reinhardt; Wheeler, Ward C.; Martindale, Mark Q.; Giribet, Gonzalo (2008). "Broad phylogenomic sampling improves resolution of the animal tree of life".Nature 452 (7188): 745–9. doi:10.1038/nature06614PMID 18322464.
69.  Jump up^ Schierwater, B.; Eitel, M.; Jakob, W.; Osigus, J.; Hadrys, H.; Dellaporta, L.; Kolokotronis, O.; Desalle, R. (January 2009). Penny, David, ed. "Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern "Urmetazoon" Hypothesis" (Free full text).PLoS Biology 7 (1): e20. doi:10.1371/journal.pbio.1000020ISSN 1544-9173.PMC 2631068PMID 19175291.
70.  Jump up to:a b c Rowland, S. M. & Stephens, T. (2001). "Archaeocyatha: A history of phylogenetic interpretation". Journal of Paleontology 75 (6): 1065–1078. doi:10.1666/0022-3360(2001)075<1065:aahopi>2.0.CO;2JSTOR 1307076Archived from the original on December 6, 2008.
71.  Jump up to:a b Porter, S. M (2008). "Skeletal microstructure indicates Chancelloriids and Halkieriids are closely related". Palaeontology 51 (4): 865–879. doi:10.1111/j.1475-4983.2008.00792.x.
72.  Jump up^ Butterfield, N. J. & C. J. Nicholas (1996). "Burgess Shale-type preservation of both non-mineralizing and "shelly" Cambrian organisms from the Mackenzie Mountains, northwestern Canada". Journal of Paleontology 70 (6): 893–899. doi:10.2307/1306492.
73.  Jump up^ Janussen, D., Steiner, M., and Zhu, M-Y. (2002). "New Well-preserved Scleritomes of Chancelloridae from the Early Cambrian Yuanshan Formation (Chengjiang, China) and the Middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications".Journal of Paleontology 76 (4): 596–606. doi:10.1666/0022-3360(2002)076<0596:nwpsoc>2.0.CO;2. Free full text without images at Janussen, Dorte (2002). "(as above)"Journal of PaleontologyArchived from the original on December 10, 2008. Retrieved August 4, 2008.
75.  Jump up^ Sperling, E. A.; Pisani, D.; Peterson, K. J. (January 1, 2007). "Poriferan paraphyly and its implications for Precambrian palaeobiology" (PDF). Geological Society, London, Special Publications 286 (1): 355–368. doi:10.1144/SP286.25. Retrieved August 22, 2012.
76.  Jump up^ Hartman, W. D. & Goreau, T. F. (1970). "Jamaican coralline sponges: Their morphology, ecology and fossil relatives". Symposium of the Zoological Society of London 25: 205–243. (cited by MGG.rsmas.miami.edu).
77.  Jump up^ J. Vacelet (1985). "Coralline sponges and the evolution of the Porifera". In Conway Morris, S.; George, J. D.; Gibson, R.; Platt, H. M. The Origins and Relationships of Lower Invertebrates. Oxford University Press. pp. 1–13. ISBN 0-19-857181-X.
78.  Jump up^ Smolker; R. A.; Connor, Richard; Mann, Janet; Berggren, Per (1997). "Sponge-carrying by Indian Ocean bottlenose dolphins: Possible tool-use by a delphinid". Ethology 103 (6): 454–465. doi:10.1111/j.1439-0310.1997.tb00160.x.
79.  Jump up^ McClenachan, L. (2008). "Social conflict, Over-fishing and Disease in the Florida Sponge Fishery, 1849–1939". In Starkey, D. J.; Holm, P.; Barnard, M. Oceans Past: Management Insights from the History of Marine Animal PopulationsEarthscan. pp. 25–27. ISBN 1-84407-527-3.
80.  Jump up^ Jacobson, N. (2000). Cleavage. Rutgers University Press. p. 62. ISBN 0-8135-2715-5.
81.  Jump up^ "Sponges"Cervical Barrier Advancement Society. 2004. Archived from the original on January 14, 2009. Retrieved September 17, 2006.
82.  Jump up^ Porterfield, W. M. (1955). "Loofah — The sponge gourd". Economic Botany 9 (3): 211–223. doi:10.1007/BF02859814.
83.  Jump up^ Imhoff, J. F. & Stöhr, R. (2003). "Sponge-Associated Bacteria". In Müller, W. E. G.Sponges (Porifera): Porifera. Springer. pp. 43–44. ISBN 3-540-00968-X.
84.  Jump up^ Teeyapant, R., Woerdenbag, H. J., Kreis, P., Hacker, J., Wray, V., Witte, L., and Proksch P. (1993). "Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba". Zeitschrift für Naturforschung C 48: 939–45.
85.  Jump up^ Takeuchi, Shinji; Ishibashi, Masami; Kobayashi, Junichi (1994). "Plakoridine A, a new tyramine-containing pyrrolidine alkaloid from the Okinawan marine sponge Plakortis sp".Journal of Organic Chemistry 59 (13): 3712–3713. doi:10.1021/jo00092a039.
86.  Jump up^ Etchells, L; Sardarian A.; Whitehead R. C. (2005). "A synthetic approach to the plakoridines modeled on a biogenetic theory". Tetrahedron Letters 46 (16): 2803–2807.doi:10.1016/j.tetlet.2005.02.124.
Further reading
·         Bergquist, Patricia R. (1978). Sponges. London: Hutchinson. ISBN 0-520-03658-1.
·         Hickman, C., Jr.; Roberts, L. & Larson, A. (2003). Animal Diversity (3rd ed.). New York: McGraw-Hill. ISBN 0-07-234903-4.
·         Ereskovsky, Alexander V. (2010). The Comparative Embryology of Sponges. Russia: Springer Science+Business Media.ISBN 978-90-481-8575-7.
·         Ruppert, Edward E.; Fox, Richard S.; Barnes, Robert D. (2004). Invertebrate Zoology (7 ed.). Brooks / COLE PublishingISBN 0-03-025982-7.
·         Murphy, Richard C. (2002). Coral Reefs: Cities Under The Seas. The Darwin Press, Inc. ISBN 0-87850-138-X.
·         Vacelet, J.; Duport, E. (2004). "Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae)". Zoomorphology 123 (4): 179–190. doi:10.1007/s00435-004-0100-0.