عظم . [
ع َ ] (ع اِ) استخوان . (منتهی
الارب ) (دهار). استخوان و به هندوی هاد گویند. (از تذکره ٔ ضریر انطاکی ). به
فارسی استخوان و به ترکی سموک نامند. (از تحفه ٔ حکیم مؤمن ). تعریف آن در کتب
پزشکی بدین نحو بیان شده که استخوان عضوی است بسیط و سختی آن به اندازه ای می باشد
که دوپاره ساختن آن غیرممکن است . (از کشاف اصطلاحات الفنون ). «قصب » حیوان که
گوشت برآن است .(از اقرب الموارد). و برای اطلاع از خواص عظم نزد قدما رجوع به
تذکره ٔ ضریر انطاکی و تحفه ٔ حکیم مؤمن شود. ج ، أعظُم و عِظام و عِظامة.
(منتهی الارب ) (اقرب الموارد). و رجوع به استخوان شود : قال
رب اًنی وهن العظم منی و اشتعل الرأس شیبا. (قرآن 4/19)؛
گفت پروردگارا مرا استخوان سست شد و سر را پیری فراگرفت . و علی الذین هادوا حرمنا
کل ذی ظفر و من البقر و الغنم حرمنا علیهم شحومَهُمِا الا... ما اختلطَ بعظم .
(قرآن 146/6)؛ و بر کسانی که یهود شدند هر ناخن
داری را حرام گردانیدیم و از گاو و گوسفند پیه های آن را حرام کردیم جز... آنچه به
استخوان مخلوط باشد.
///////////////
عظم. به پارسی استخوان و به ترکی سونلک و به هندوی هاد گویند. سرد و خشک است در دویم.
چون استخوان آدمی را بسوزند و یک درم از او به گلاب میل کنند، صرع را سودمند آید و
نقرس و وجع المفاصل را نفع دهد؛ و چون به ماء الشعیر سرشته، بر نشان آبله طلا کنند،
نافع بود. چون یک مثقال خاکستر استخوان تکه را به پنج مثقال شراب انجیره خورند، باه
برانگیزاند؛ و چون خاکستر استخوان ران گاو را به شربت انجبار میل نمایند، قطع نزف دم
کند و مانع اسهال گردد؛ و چون دندان آدمی را و بال راست هدهد در زیر سر خفته نهند،
بیدار نشود، ما دامی که از زیر سرش دور نکنند؛ و چون دندانهای جانب راست نهنگ را بر
بازوی راست مرد
بندند، باه را قوّت
دهد و قضیب را سخت گرداند؛ و چون دندان پیش روباه را بر گردن مصروع بندند، نافع بود.
ریاض الادویه، ص:
129
//////////////
///////////////
اُستُخوان جسم جامدیاست که تشکیلدهندهٔ اسکلت جانوران و پارهای از استخوانبندی است. استخوان به ریختهای گوناگون و اندازههای بسیار مختلف در بخشهای
اندام جایگرفته سازهٔ درونی و
بیرونی پیچیدهای دارد. بخش بیرونی استخوان سفت و سخت و پدیدآمده از مواد آلی مانند کلاژن و املاح معدنی چون فسفات کلسیم وکربنات کلسیم است. استخوانها دارای وزد کمی هستند ولی محکم و پایدارند و عملکرد
بسیاری دارند. تولیدگلبولهای سفید و قرمز، انبار کردن املاح و بالا بردن توان جابجایی را استخوان انجام میدهد.
استخوان در زبان پهلویastuxan بودهاست.
محتویات
[نمایش]
استخوانهای بدن از بافت سخت و محکمی به
نام بافت استخوانی همبند تشکیل شده است. استخوان یک بافت زنده و در واقع یک اندام است. رشد میکند، تغذیه میکند، تغییر شکل میدهد و میمیرد. استخوان
از سلولهایی تشکیل شده که به آنها سلولهای استخوانی یا استئوسیت Osteocyte میگویند. این سلولها در کنار یکدیگر قرار نداشته و از هم فاصله زیادی
دارند. فاصله بین این سلولها را مادهای بنام ماده بین سلولی پر کرده است. این
ماده راماتریکس Matrix
هم میگویند. این ماده یک داربست و شبکه سه بعدی از
پروتئین و مواد قندی بخصوصی تشکیل شده که روی آن املاح کلسیم رسوب کرده است. این
املاح کلسیم عمدتاً از جنس هیدروکسی
آپاتیت(Hydroxyapatite) هستند.
طرز قرار گرفتن و ساختمان ماده بین استخوانی
نظم خاصی داشته وبطوریکه املاح معدنی آن به شکل تیغههای مدور متحد المرکزی در
کنار هم قرار دارند. به این تیغهها لاملا Lamella
میگویند. در مرکز این دوایر متحد المرکز تیغهای شکل،
کانال توخالی وجود دارد که حاوی عروق و اعصاب است. به این کانال یا مجرا کانال
هاورس Haversian canal میگویند.
یک مجرای هاورس و ۶–۵ تیغه استخوانی دایرهای که دور آنرا گرفتهاند یک ساختمان
ظریف را درست میکند که به آن سیستم هاورس
Haversian system میگویند.
عروقی که در کانال هاورس سیر میکنند وظیفه
تغذیه سلولهای استخوانی یا استئوسیتها را به عهده دارند. هر سلول استخوانی در یک
محفظه کوچک به نام لاکونا Lacuna قرار دارد. لاکوناها از طریق مجاری باریکی به کانال هاورسی متصل هستند
و از آن طریق اکسیژن و مواد غذایی را به استئوسیتها میرسانند. فاصله لاکوناها تا
کانال هاورس از یک دهم میلیمتر کمتر است.
ساختار استخوان[ویرایش]
استخوان شامل ماده زمینهای و سلولهای بافت
استخوانی است. ماده زمینهای به دو صورت بیشکل و شکلدار وجود دارد. ماده زمینهای
بیشکل شامل مواد کانی نظیر فسفات و کربنات کلسیم و منیزیم، یون سیترات، یون
فلوراید، سدیم و پتاسیم است. مواد آلی شامل کندروایتین سولفات C
و Aو
پروتئینی به نام استئوموکوئید و مواد آلی دیگری است که عبارتند از: استئونکتین، که بلورهای کانی را به کلاژن وصل میکنند. استئوکلسین که کلسیم را به
خود میبندد. سیالوپروتئین و پروتئین شکل دهنده استخوان.
ماده شکلدار زمینه استخوان کلاژن I است. کلاژن به صورت یک هسته مرکزی است که مواد کانی بر روی آن رسوب
کردهاند. کل این ترکیبات بلورهای هیدروکسی آپاتیت را تولید میکنند. هیدروکسی
آپاتیت تیغههای استخوانی را به شکل دوایر
متحدالمرکز میسازد. علاوه بر اینها ماده سومی بنام سیمان وجود دارد که اولاً رشتههای
کلاژن را به یکدیگر میچسباند، ثانیاً سیستمهای هاورسی را به یکدیگر متصل میکند و
شکل منظمی به آنها میدهد. سلولهای بافت استخوانی بر چهار نوعاند که همزمان قابل
رویت نیستند.
انواع استخوان[ویرایش]
1. استخوانهای دراز: استخوان دراز، از یک تنه تقریباً استوانهای با یک قسمت پهن در دو
انتها تشکیل شدهاند. این گروه بیشتر استخوانهای اندامهای فوقانی و تحتانی را در
بر میگیرد.
2. استخوانهای کوتاه: از نظر شکل تفاوتهای زیادی باهم دارند ولی بطور کلی میتوان آنها را به
شکل مکعب در نظر گرفت. این گروه استخوانهای قسمت پروکسیمال دست و پا را در بر میگیرند
که به ترتیب استخوانهای کارپال و تارسال نامیده میشوند.
3. استخوانهای پهن: استخوانهای پهن در مقایسه با قطرشان سطح پهن دارند و شامل استخوانهای
سقف جمجمه، جناغ سینه و دندهها میباشند.
4. استخوانهای نامنظم: استخوانهای نامنظم در نظر شکل تفاوتهای زیادی باهم دارند و در هیچکدام
از گروههای فوق قرار نمیگیرند و شامل استخوانهایی میشوند که ستون فقرات و بعضی
از استخوانهای جمجمه را تشکیل میدهند.
5. استخوانهای سزامویید (کنجدی): این استخوانهای در
تاندونهای نزدیک مفاصل ظاهر میشوند مهمترین استخوان این گروه استخوان کشکک میباشد.
استخوانها از هر دو نوع الاستیک (قابل
انعطاف) و سخت هستند. الاستیسیته (انعطافپذیری) آنها ناشی از ماده آلی (پروتئین) موجود در آنهاست، و این در حالی است که سختی آن وابسته به ماده غیرآلی
(املاح معدنی مثل کلسیم و فسفر) موجود در آنهاست. با توجه به سن، درصد مواد آلی و غیرآلی موجود در استخوانها فرق میکند. با افزایش سن، درصد مواد
غیرآلی افزایش مییابد، انعطافپذیری استخوانها کاهش مییابد، و استعداد شکنندگی
استخوان زیاد میشود.[نیازمند منبع]
استخوانها ی بدن از لحاظ آرایش قرار گرفتن
تیغههای استخوانی و تراکم استخوانی به دو دسته تقسیم میشوند
استخوانهای کورتیکال
Cortical bone :در این استخوانها سیستمهای هاورسی
بصورت متراکم و فشردهای در کنار یکدیگر قرار میگیرند. این استخوانها بسیار سخت
و محکم هستند و در تصویر رادیولوژی به رنگ سفیدتری دیده میشوند.
استخوانهای اسفنجی
Cancellous bone: در این استخوانها در بین تیغههای
استخوانی فضاهای توخالی وجود دارد که حاوی مغز استخوان است. یکی از وظایف این مغز استخوان تولید سلولهای خونی است. استخوانهای
اسفنجی به خاطر همین فضاهای خالی، تراکم کمتری داشته و مانند اسفنج متخلخل هستند. در این استخوانها
مقدار وجهت قرار گرفتن تیغهها بسته به نیروهایی است که به استخوان وارد میشود.
هرچه استخوان تحت تأثیر نیروهای بیشتری باشد تراکم این تیغهها بیشتر و تیغهها
قویترند. جهت قرار گرفتن تیغهها هم در جهت و امتداد نیروهایی است که به استخوان
وارد میشوند.
سلولهای بافت استخوانی[ویرایش]
این سلولها ستارهای شکلاند و دو هسته بیضی
و پر از کروماتین دارند. هر استئوسیت در پیرامون خود لاکونا دارد. برای جلوگیری از
مرگ سلولی، استئوسیتها توسط زواید بسیار ظریف سیتوپلاسمی به یکدیگر مرتبط هستند.
استئوسیتهایی که در نواحی عمیق یا پیر بافت استخوانی قرار دارند دارای شبکه آندوپلاسمی ناصاف و دستگاه گلژی کمتری هستند. تا زمانی که صدمهای به استخوان وارد
نشود، استئوسیتها تقسیم نمیشوند. با ایجاد ضایعه، تقسیمات سلولها آغاز میشود.
تعدادی از آنها به صورت استئوبلاست، ماده زمینهای بیشکل را میسازند و خود به
استئوسیت تبدیل میشوند برخی دیگر به صورت سلولهای اجدادی استخوان باقی میمانند.
سلولهایی هستند چند ضلعی با آنزیم فسفاتاز
قلیایی فراوان و هستهای که در خارج از مرکز سلول قرار دارد. این سلولها در محلی
که فعالیت سازندگی زیاد است فراواناند و دارای شبکه آندوپلاسمی ناصاف و دستگاه گلژی هستند. این دو نشان دهنده فعالیتهای ترشحیاند. به همین دلیل حبابهای
ترشحی بسیاری در این سلولها دیده میشود. هنگام فعالیت، تعدادی از استئوبلاستها به
صورت سلولهای اجدادی استخوان ذخیره میشوند. اینها با وجود آنزیم فسفاتاز قلیایی،
قادرند ماده زمینهای بسازند و به همین دلیل سلولهای سازنده خوانده میشوند. هنگام
فعالیت مکعبی شکل و بازوفیلی وهنگام استراحت، پهن و اسیدوفیلی هستند.
استئوکلاستها از مونوسیتهای خون تولید میشوند.
استئوکلاستها مسئول تجزیه ماده زمینه استخوان در هنگام استخوان سازی هستند.
(استئوکلاستها نقش قالب گیری استخوان را بر عهده دارند). نقش استئوکلاستها عکس
استئوبلاستهاست به همین دلیل سلولهای مخرب نامیده میشوند. این سلولها، ابتدا ماده
زمینهای بیشکل و سپس کلاژن را تجزیه میکنند. استئوکلاستها معمولاً سلولهایی غول
آسا با سیتوپلاسم وسیعاند و تعداد ۶ تا ۵۰ هسته دارند.
استئوکلاستهای جوان تک هستهای بوده و در
هنگام فعالیت بازوفیلی و هنگام استراحت اسیدوفیلی هستند. با وجود اسید فسفاتاز دراستئوکلاستها این سلولها میتوانند ماده زمینهای را تجزیه کنند. به
علاوه هنگامی که میزان کلسیم خون به علت عمل هورمون تیروکسین و پاراتورمون کاهش مییابد،
استئوکلاست کلسیم را از استخوان میگیرد و به جریان خون میفرستد. استئوکلاستها
نزدیک سطح استخوان از حفرهای از ماده استخوانی در حال تخریب قرار دارند.
استخوانهای چهاراندام[ویرایش]
|
|
منابع[ویرایش]
////////////
العَظم (بالإنجليزية:
Bone) ويُعرف أيضاً بالنسيج العَظمي (بالإنجليزية:
osseous tissue) ، يُشكل الَعظم ما يُعرف بِالجِهاز الهيكلي حَيث يَحتوي جِسم الإنسان على أكثر من 200 عَظمة ، يُقدرها البَعض
بِـ206 عظمات في الإنسان البالِغ ، وهُناك علم خاص بِدراسة العِظام يُسمى بِـ "علم العَظم " (Osteology) . يَتكون الهيكل
العظمي عند الإِنسان من جُزئين رئيسيين، هما: الهيكل المحوري ، والهيكل الطرفي .
العظم في الجسم البشري يضم نوعان اثنان من أنواع النسيج العظمي: القشري والإسفنجي.
وَتُشير الأسماء إلى أن كِلا النَوعان يَختلف في الكثافة،
أو مقدار اكتظاظ النسيج داخل العظم . وَهُناك ثلاثة أنواع من الخلايا تُساهم في
عملية نمو العظم وهيَ :
محتويات
[أظهر]
1. الدَعامة : يُعطي الجِهاز الهيكلي الشَكل
العام للجسم ، وتوفر العِظام الإطار لارتباط أنسجة و أعضاء الجِسم.
3. الحِماية : تعمل العِظام على حماية أجهزة
وأعضاء الجِسم ، فمثلاً تحمي الجُمجمة الدِماغ ،
ويَحمي القفص الصدري القَلب والرئتين وَغيرها .
4. رَوافع : تَعمل العديد من العِظام بالتآزر
مع العضلات الهيكلية كَروافع (Lever) بإمكانها تغيير مقدار واتجاه القوة الناتجة عن العَضلات .
5. خزن الأملاح والدُهون : تُشكل العظام
مَخزناً رئيسياً لأملاح الكالسيوم والفسفور في الجسم ، كما تُخزن الدُهون في نخاع العظم الأصفر .
أمراض العظام[عدل]
كسر العظم[عدل]
كَسر العظم مِن الإصابات الشائعة التي تُصيب العظم ، ويَتعافى العَظم عن طريق
تَشكيل الكِلس ويُعتبر الأشخاص المُصابين بِهشاشة العظام أكثر عرضة للإصابة بِكسر
العَظم ، و أشهر أنواعها هو كسر عُنق عظم الفَخذ عند كِبار السن .
هشاشة العظام[عدل]
سمي مرض هشاشة العظام بالسارق الخفي الذي يسرق قوة الشخص دون ان يعلم الشخص ، وهناك بعض أوجه
الشبه مع مرض الكساح الذي يصيب الأطفال. كثير من النساء لا يشربن الحليب ولا يتناولن
منتجاته بالقدر الكافي ، وبعد الحمل تشكو إحداهن آلآما في الأسنان والمفاصل
والساقين ، وتتنقل من عيادة اسنان لأخرى ومن آلام إلى تكلفة مادية ، والحل ميسر
وبسيط فالمطلوب تناول مصادر الكالسيوم والفسفور المتوفرة في الحليب ومنتجاته
والسمك وبعض الخضراوات الورقية كما تتعرض للشمس المباشرة نصف ساعة أسبوعيا ، ويكفي
هذا لإمدادها بفيتامين ( د ) الذي يتحول بفعل أشعة الشمس من الكوليسترول تحت الجلد . والصنف الثاني
الذي يتعرض بصورة أكبر لمشكلة لين العظام هم كبار السن ، فعندما يتجاوز الشخص سن
الاربعين فيقل معدل ترسيب الكالسيوم في العظام وتحدث هجرة عكسية فيخرج الكالسيوم
من العظام ويحدث أكثر للنساء أيضا عند انقطاع الطمث بسبب التغير
الهرموني لسن اليأس . الأشخاص صغار البنية والذين يفتقد غداؤهم لعنصر الكالسيوم
بالذات إذا اتصفت حياتهم بالكسل والخمول وعدم الحركة هم من المعرضين بصورة أكبر
للمرض. عند قلة الكالسيوم يبدأ العظم في الضعف والترقق ومع أنه يبدو عاديا من
الخارج إلا أنه يحتوي على فراغات في الداخل مما يعني أنه قابل للكسر بسهولة .
الوقاية والعلاج[عدل]
يجب ألا يقل ما يتناوله الفرد عن 1000 ملغم
كالسيوم ( كوبين حليب أو لبن أو زبادي ) أو شريحة جبن ويزيد إلى 1500 ملغم أثناء
الدورة الشهرية أو الحمل أو الإرضاع . كذلك الحرص على تناول الأغدية المذكورة
سالفا باعتدال وهو يكفي لتزويد اجسامنا بحاجتها من هذه العناصر . هناك أغدية أخرى
غنية بالكالسيوم أيضا مثل اللحوم والأسماك والروبيان والبيض ومن الخضراوات البسلة والبقدونس والجرجير والفجل ومن الفواكه
التمر مزاولة الأنشطة الرياضية أو اللياقية كالمشي والسباحة بما يناسب العمر.
تركيب العظم[عدل]
تركيب العظم
إن العظم صلب نسبيا وخفيف، وتدخل مواد عديدة
في تركيبه، حيث يتكون وبشكل رئيسي من فوسفات الكالسيوم.
يكون العظم على نوعين: صلب "مضغوط" وأسفنجي. تتكون قشرة العظم من العظم الصلب. العظم المكون للقشرة يشكل
80% من كتلة العظم الكلية للهيكل العظمي في الإنسان البالغ. بسبب كثافة القشرة
العالية تعد نسبتها 10% من مساحة الجسم السطحية. اما العظم الاسفنجي فيحتل مساحة
سطحية كبيرة أكثر بعشرة مرات من العظم المكون للقشرة، ويشكل 20% من المساحة
السطحية لجسم الإنسان.
أشكال العظم[عدل]
·
العظام الطويلة (Long
bones): طويلة نسبيا ورفيعة، توجد في مناطق عدة، مثل
الذراعين والفخذين، وتعد عظمة الفخذ أكبر وأثقل عظام الجسم.
·
العظام الغير منتظمة (irregular bones): أشكالها وسطوحها
صلبة ومن الأمثلة عليها: فقرات العمود الفقري والعديد من عظام الجمجمة.
·
العظام السمسمية (Selsamoid):
عظام مسطحة صغيرة تشبة بذور السمسم تقع بالقرب من الأربطة
والمفاصل كما في عظام الرضفة في الركبة.
·
العظام
المسننة (Sutural bones): عظام
صغيرة ومسطحة أشكالها غير منتظمة تقع بين عظام الجمجمة المسطحة:
حوافها مسننة بحيث تتداخل مع بعضها.
العظم القشري[عدل]
العظم القشري يتكوّن من أعمدة صغيرة ميكروسكوبية تُسمّى العظمون (osteons). كل عمود يتكون من طبقات متعددة من الخلايا العظمية و الخلايا بانية العظم تحيط بقناة مركزية في الوسط اسمها قناة هافرس.
قنوات فولكمان تصل ما بين العظمونات وتكون متعامدة عليهم.
العظمون تشمل قناة وسطى تدعى قناة هافرس، والتي تكون محاطة بحلقات مركزية
(lamellae) من الهيكل الشبكي. تقع الخلايا العظمية (أوستوكيتس) بين حلقات الهيكل، في فراغات تدعى الجوبات(lacunae). تتفرع
قنوات صغيرة اسمها نفيقات العظم (canaliculi)
من الجوبات إلى قناة osteonic لإنشاء الممرات خلال الهيكل
الصلب. في العظم الكثيف، تكتظ قنوات هافرس بإحكام مُشكِّلة ما يبدو كالكتلة الصلبة. تحتوي قنوات هافرس على الأوعية الدموية و تجري بصورة موازية لمحور العظم الطويل. هذه الأوعية الدموية ترتبط عن طريق قنوات ثاقبة عرضية، بالشراين على
سطح العظم.
عظم الحوض[عدل]
الحوض في النساء ناعم وأخف وزنا و العضلات
والأربطة أقل وضوحاً في الحوض من الرجال .
يختلف عن الرجال بسبب الإنجاب[عدل]
·
مخرج الحوض
واسع
·
زاوية
العانة موسعة
·
انحناء أقل
من العجز والعصعص
·
مدخل الحوض
الدائري واسع
·
منخفض و
واسع
العظم الإسفنجي[عدل]
العظم في كتاب تشريح غراي"بحاجة
للترجمة على فوتوشوب"
العظم الإسفنجي (Cancellous)، أخف وأقل كثافة من العظم الكثيف. العظم الإسفنجي يشمل صفائح (ترابيق) ودعامات من العظم مجاورة للتجاويف متناثرة صغيرة تي تحتوي نخاع العظم الأحمر. تتصل نفيقات العظم مع التجاويف المجاورة، بدلا من قناة هافرس المركزية، للحصول على حاجتها من الدم. قد يبدو بأن الترابيق مرتبة بطريقة عشوائية، لكنها منظمة لإعطاء أقصى صلابة بصورة مشابهة للشيالات التي تستعمل لدعم البناء. يتبع ترابيق العظم الإسفنجي خطوط الإجهاد ويمكن أن يعاد ترتيبها إذا تغير إتجاه الإجهاد.
تطور ونمو العظم[عدل]
المصطلحين: تَكَوُّنُ العَظْمِ (osteogenesis) و التعظّم (ossification) يُستعملان في أغلب الأحيان بشكل مرادف للإشارة إلى عملية التشكيل
العظمي. أجزاء من الهيكل العظمي تتشكل أثناء الأسابيع القليلة الأولى بعد الإخصاب. بحلول نهاية الإسبوع الثامن بعد الإخصاب، يتكون شكل الهيكل من الغضاريفوالأنسجة الرابطة وتبدأ عملية التعظم.
يستمر تطور العظم في أثناء فترة البلوغ. وحتى بعد البلوغ
يستمر تطوير العظم لإصلاح الكسور ولإعادة القولبة. خلايا الأوستيوبلاستس،
الأوستوسايتس والأوستيوكلاستس تشترك في تطوير، نمو وإعادة قولبة شكل العظام. هناك
نوعان للتعظم: تعظم غشائي و تعظم غضروفي.
الغشائي[عدل]
. وتشمل بعض العظام
المستوية في الجمجمة وبعض العظام الغير منتظمة. عظام المستقبل تشكل أولا كأغشية من أنسجة
رابطة. تهاجر خلايا الأوستيوبلاستس إلى هذه الأغشية وتحيط نفسها بهيكل شبكي عظمي.
خلايا الأوستيوبلاستس المحاطة بالهيكل الشبكي تسمى أوستوسايتس.
غضروفي[عدل]
طريقة التعظم داخل الغضروف تتم عن طريق استبدال الغضاريف بالنسيج العظمي.
أغلب العظام في الهيكل العظمي تتشكل بهذا الإسلوب. تدعى
هذه العظام بعظام داخل الغضروف. في هذه العملية، العظام تشكل أولا كقوالب من
الغضاريف. أثناء الشهر الثالث بعد التلقيح، الأوعية الدموية و الخلايا بانية العظم تخترق سمحاق الغضروف المحيط بقوالب الغضاريف ويتحول سمحاق الغضروف إلى سمحاق. حيث تشكل الخلايا بانية العظم ياقة من العظم المضغوط حول جسم العظم. في نفس الوقت، الغضروف في مركز جسم العظميبدأ بالتحلل. وتخترق خلايا الأوستيوبلاستس الغضروف المتحلل وتستبدله
بعظم الإسفنجي. هذا يشكل نواة أساسية للتعظم. تنتشر عملية التعظم من هذه النواة
إلى نهايات العظام. بعد تشكل العظم الإسفنجي في جسم العظم، تقوم الخلايا ناقضة العظم بتحطيم قسم من العظم المشكل حديث لفتح جوف النقي.
الغضروف في المشاشات يواصل النمو لإعطاء المجال للعظم النامي لأخذ مزيد من الطول. لاحقا،
عادة بعد الولادة، تنشأ مراكز تعظم ثانوية في المشاشات. التعظم في المشاشات مشابه للذي يحصل في جسم العظم إلا أن العظم الإسفنجي لا يحطم لتشكيل جوف النقي. عندما يكتمل التعظم الثانوي، الغضاريف تستبدل بالعظم كليا ماعدا في
منطقتين. مساحة من الغضروف تبقى على سطح المشاشة مشكلة الغضروف المفصلي، أما المنطقة الأخرى من بقايا الغضروف فتقع بين المشاشة و جسم العظم. وهذه تسمى الطبقة المشاشية أو منطقة النمو.
نمو العظام[عدل]
مراحل نمو العظام
تنمو العظام طوليا انطلاقا من الطبقة المشاشية بواسطة عملية مشابهة للتعظم داخل الغضروف.
الغضروف الموجود بمنطقة الطبقة المشاشية بجانب المشاشة يواصل النمو. الخلايا غضروفية بجانب جسم العظم، تهرم و تتحلل. تدخل الخلايا بانية العظم وتعظم الهيكل لتشكيل العظم. تستمر هذه العملية في فترة الطفولة وسنوات
المراهقة إلى أن يتباطأ نمو الغضروف ومن ثم يتوقف. عند توقف نمو الغضروف، في أوائل
العشرينات، تتحجر الطبقة المشاشية بالكامل ويبقى خط رقيق جدا من المشاشية ، وعليه لا تستطيع العظام النمو طوليا. يتم التحكم بنمو العظام
بواسطة هورمون النمو المفرز في الغدة النخامية، وهورمونات
الجنس المفرزة في المبايض والخصيات.
على الرغم من توقف نمو العظام طوليا، إلا
أنه يمكنها أن تواصل زيادة سماكتها (القطر) في فترة حياتها وذلك كرد فعل على
الإجهاد بسبب نشاط العضلات المتزايد أو
زيادة الوزن. إن زيادة القطر تدعى نموا عطفي. الخلايا بانية العظمفي السمحاق تشكل طبقة عظمية كثيفة حول السطح العظمي الخارجي. وفي نفس الوقت، تقوم
خلايا أوستيوكلاستس في بطانة العظم بتحطيم قسما من العظم على السطح العظمي الداخلي، حول جوف النقي. تزيد هذه العمليتين قطر العظم، وفي نفس الوقت، تمنع العظم من أن يصبح
ثقيلا وضخما.
///////
به آذری سوموک
///////////
به کردی سورانی ئێسک :
ئێسک (بە ئینگلیزی
Bone) پێکهێنەری ئێسکە پەیکەرە، بەڕێگای جیاواز کاردەکەن. لەگەڵ زۆری ژمارە
و گەورەیی قەبارەیان کەمتر لە ٢٠٪ کێشی لەش پێکدێنن.
//////////////
به زازاکی استه:
Este (Ebe Latinki: os,
qesey zafine de ki ossa vaciyeno; be Yunanki: ost, oste ya
ki osteo vaciyeno, no ki οστούν ra yeno)
İskeletê insanan de
teqribki 206 [dı sey u şeş] estey estê. Tenya insanan de nê, xeylê
heywani ki be mora mianiyê u inan de estey estê. Hergı yew este karê do bin
keno. Heto bin ra ki estey organê ke zerrey insanan derê inan seveknenê.
Mesela, estey serey mezgê insani, estey qefsıngi zerr u pışıka insani
seveknenê ke tebera zerar cı mediyo. Zanışiya ke esteyan sero cıgeyrena cı
rê osteolociye vaciyeno
u no ilm tewıranê esteyan cêra keno.
////////////
به عبری:
העצם היא רקמת חיבור קשה וצפופה
המהווה חלק מרכזי בשלדם של רוב החולייתנים, מעניקה להם את צורתם, ומאפשרת את תפקודם.
העצמות משתתפות בפעילויות תמיכה, תנועה, הגנה, אגירה, והפקת תאי דם בגוף. זוהי רקמה
קשיחה, אך קלה ופריכה, שבחלקה החיצוני צפופה ובחלקה הפנימי ספוגית, דבר המקנה קלות
בתנועה. אצל פעוט ישנן 270 עצמות, אשר חלקן מתאחות עם הזמן, ובבגרות ישנן 206 עצמות.
לעצם מספר תפקידים. העצם מאפשרת
לגוף תנועה ומעניקה לו תמיכה. העצמות מספקות את ההתנגדות הנחוצה לשרירי השלד כדי לפעול.
הן מסייעות לשרירים לשמור על מבנה אברי הגוף או לשנותו. בנוסף, הן מספקות אתרי אחיזה
לשרירים. עצמות כגון הגולגולת והצלעות מספקות לאברי גוף פנימיים (כמו המוח והריאות,
בהתאמה) הגנה מפני כוחות חיצוניים. העצם משמשת כאתר למאגר מינרלים בגוף. היא מסייעת
בשמירה על מאזן היונים בגוף, ובפרט על משק הסידן, ובפעילות מטבולית. בעצמות מסוימות
קיימים אתרים המכילים מח עצם בו מיוצרים ומתמיינים תאי הדם.
רקמת העצם היא רקמה דינמית
– עצם נהרסת ונבנית במהלך החיים בתהליך של תחלופה. תהליך זה תלוי בגירויים מכניים,
בגורמים מטבוליים, בהשפעות הורמונליות ובתרופות. עם ההזדקנות יש יותר הרס מבנייה, ולכן
בזקנה העצמות נשברות בקלות רבה יותר.
////////////
به کردی هِستی:
Hestî (carina jî, hestû)
an hêstik (bi latînî: os)
kelexê barhêl e, ko karê wî rahiştina laş e. Hestî kelexê di skeletê laşê mirov û
kakerîkê de ye. Kakerîk bi dawiya hin hestûyan ve, di zengelor û di guh de ye.
Hestî ji hemû kelexên din hişktir e. Ko mirov ber bi kalbûnê ve diçe hestî pûç
dibin û zûtir dişkin.
hestû, bi du awayan di
laş de heya. awayê ku mirov jê re karê bêje Kakerîk û awayê ku mirov hestûyê
asayî yê ku heya. Hestûryê Kakerîk, ne weke hestûyê laşê yê din hişka. Lê ku
mirov mirov hestû bêne ser ziman hemû hestû jî, bi çermikekî re rûgirtî ya. Ew
çermik, hestû xwedî dike. Wekî din jî di xisar û zîyanên ku têde bibin di
buhurîna wan de û di stûrbûn û mazinbûna wê de jî xwediyê awayekî xwedîkirinê
ya. Ew mixka di hundurê hestû ya ku xwediyê çavikan a, di valahiya hestûr de di
awayekî zer de ya. Di serê hestû de weke ku di awayekî sor de ya. Ev rewş hemû
di temenê bûn û pêşketina wan de û di mazinbûn û hişkbûn û zexmbûna hestû de ew
çermikê pergî. Nexweşiyên hestû yên weke yên helîna hestû bi jêçûna wê re dibê.
Halîna hestû, ew rûpistiya ku li ser metabolîzma hestû ku heya bi halîn û ji
serçûna wê re dibe. Bi wê re mirov karê vê bêje ku ew mînarale ku asta wê
kêmbûna wê, wê bê sedeme halîna hastû.
////////////
به اردو بدی:
ہڈی (جمع: ہڈیاں) انسانی یا کسی بھی دوسرے ریڑھ کی
ہڈی کے حامل جانور میں ڈھانچے کا حصہ ہوتی ہے۔ ہمارے اجسام پٹھوں اور خون سے بنے ہوتے
ہیں جو کہ ہڈیوں کے ڈھانچے پر مزین رہتے ہیں۔ ہڈی کے بغیر بنیادی ڈھانچہ جیسا کسی بھی
جانور کا ہوتا ہے ممکن نہیں رہتا۔ ہڈیوں کے پنجر کو اگر جسم سے علیحدہ کر دیا جائے
تو اس جانور کا کھڑا رہنا اور حرکت کرنا ناممکن ہو جاتا ہے۔
به ترکی کمیک:
Kemik, vücudu
oluşturan dokular arasında en sert olanıdır. Organizmada gerçek anlamda destek
görevi yapan dokudur. Ayrıca organizmanın kalsiyum depolarıdır. Kalsiyum
bakımından doymuş olduklarından serttir. Sert olmalarına rağmen kıkırdak
dokusundan farkları damar içermeleridir. Bu doku yapısında çeşitli tipte
hücreler (osteosit, osteoblast, osteoklast) ve hücrelerarası madde (matrix) bulunmaktadır.
Kemiğin enine kesiti incelendiğinde dış ve iç yüzeyleri bir zarla örtülüdür.
Bunlardan dıştakine; periosteum, iç yüzeydekine; endosteum denir. Bu zarlar
düzensiz sıkı bağ dokusundan yapılmışlardır. Periosteumun hemen altında dış
halkasal sistem yer alır. Endosteumun hemen üstünde ise iç halkasal sistem
bulunur.
Havers sistemleri ise
(osteon) iç ve dış halkasal sistemlerin arasını doldurur. Volkmann kanalları
ise komşu Havers kanallarını birleştirir.
Yetişkin bir insan
iskeleti 207 kemikten oluşmaktadır. Fakat yeni doğan bir bebeğin ise 300'e
yakın kemiği bulunmaktadır. Bu farklılığın sebebi ise insanın yetişkin haline
gelirken kemiklerin zamanla birleşmesiyle yeni kemiklerin ortaya çıkmasıdır.
//////////
A bone is
a rigid organ that
constitutes part of the vertebral skeleton.
Bones support and protect the various organs of the body, produce red and white
blood cells, store minerals and
also enable mobility. Bone tissue is a type of dense connective
tissue. Bones come in a variety of shapes and sizes and have a
complex internal and external structure.
They are lightweight yet strong and hard, and serve multiple functions. Mineralized osseous tissue,
or bone
tissue, is of two types, cortical and cancellous,
and gives a bone rigidity and a coral-like
three-dimensional internal structure. Other types of tissue found in bones
include marrow, endosteum, periosteum,nerves, blood
vessels and cartilage.
Bone is an active
tissue composed of different types of bone
cells. Osteoblasts are involved in the creation and
mineralisation of bone; osteocytes and osteoclasts are
involved in the reabsorption of bone tissue. The mineralised matrix of bone
tissue has an organic component mainly of collagen and
an inorganic component ofbone mineral made up of various salts.
In the human
body at birth, there are over 270 bones,[1] but many
of these fuse together during development, leaving a total of 206 separate
bones in the adult,[2] not
counting numerous small sesamoid
bones. The largest bone in the body is the thigh-bone (femur) and the smallest
is the stapes in
the middle
ear.
Contents
[show]
Structure[edit]
Main article: Bone
tissue
Cross-section of bone
Bone is not a
uniformly solid material, but is mostly a matrix.
The primary tissue of bone, bone
tissue (osseous tissue), is relatively hard and
lightweight. Its matrix is mostly made up of a composite material incorporating
the inorganic mineral calcium
phosphate in the chemical arrangement termed calcium hydroxylapatite (this
is thebone
mineral that gives bones their rigidity) and collagen,
an elastic protein which improves fracture resistance.[3] Bone
is formed by the hardening of this matrix around entrapped cells. When these
cells become entrapped from osteoblasts they become osteocytes.[citation needed]
Layered structure[edit]
Cortical bone[edit]
Cross-section details
of a long bone
The hard outer layer
of bones is composed of cortical
bone also called compact bone. Cortical referring to the outer
(cortex) layer. The hard outer layer gives bone its smooth, white, and solid
appearance, and accounts for 80% of the total bone mass of an adult human skeleton.[citation needed] However,
that proportion may be much lower, especially inmarine
mammals and marine
turtles, or in various Mesozoic marine
reptiles, such as ichthyosaurs,[4] among
others.[5]
Cortical bone consists
of multiple microscopic columns, each called an osteon.
Each column is multiple layers ofosteoblasts and osteocytes around
a central canal called the Haversian
canal. Volkmann's
canals at right angles connect the osteons together. The
columns are metabolically active, and as bone is reabsorbed and created the
nature and location of the cells within the osteon will change. Cortical bone
is covered by a periosteum on its outer surface, and an endosteum on
its inner surface. The endosteum is the boundary between the cortical bone and
the cancellous bone. [6]
Cancellous bone[edit]
Micrograph of
cancellous bone
Filling the interior
of the bone is the cancellous bone also known
as trabecular or spongy bone tissue.[6] It
is an open cell porous network. Thin formations of osteoblasts covered
in endosteum create an irregular network of spaces.[7]Within
these spaces are bone marrow and hematopoietic stem cells that
give rise to platelets, red
blood cells andwhite
blood cells.[7] Trabecular
marrow is composed of a network of rod- and plate-like elements that make the
overall organ lighter and allow room for blood vessels and marrow. Trabecular
bone accounts for the remaining 20% of total bone mass but has nearly ten times
the surface area of compact bone.[8]
Bone marrow[edit]
A simplified
illustration of cells in bone marrow
Bone
marrow, also known as myeloid
tissue, can be found in almost any bone that holds cancellous
tissue. Innewborns, all such bones are filled exclusively with
red marrow, but as the child ages it is mostly replaced by yellow, or fatty marrow.
In adults, red marrow is mostly found in the bone marrow of the femur, the
ribs, the vertebrae andpelvic bones.[citation needed]
Composition[edit]
Main article: Bone
tissue
Cells[edit]
Main article: Bone
cell
Bone cells
Bone is a
metabolically active tissue composed of several types of cells. These cells
include osteoblasts, which are involved in the creation
and mineralization of bone
tissue, osteocytes, and osteoclasts,
which are involved in the reabsorption of bone tissue. Osteoblasts and
osteocytes are derived from osteoprogenitor cells,
but osteoclasts are
derived from the same cells that differentiate to form macrophages and monocytes.[9] Within
the marrow of the bone there are also hematopoietic stem cells. These
cells give rise to other cells, including white
blood cells, red
blood cells, and platelets.[10]
Light
micrograph of cancellous decalcified bone displaying
osteoblasts actively synthesizing osteoid, containing two osteocytes.
- Osteoblasts are
mononucleate bone-forming cells. They are located on the surface of osteoid
seams and make aprotein mixture known as osteoid,
which mineralizes to become bone.[11] The
osteoid seam is a narrow region of newly formed organic matrix, not yet
mineralized, located on the surface of a bone. Osteoid is primarily
composed of Type I collagen. Osteoblasts also manufacture hormones,
such as prostaglandins, to act on
the bone itself. They robustly produce alkaline phosphatase,
an enzyme that
has a role in the mineralisation of bone, as well as many matrix proteins.
- Osteocytes are
mostly inactive osteoblasts.[9] Osteocytes
originate from osteoblasts that have migrated into and become trapped and
surrounded by bone matrix that they themselves produced.[6] The
spaces they occupy are known as lacunae. Osteocytes have
many processes that reach out to meet osteoblasts and other osteocytes
probably for the purposes of communication.[citation needed]
Osteocyte
- Osteoclasts are
the cells responsible for bone resorption, thus they
break down bone. New bone is then formed by the osteoblasts. Bone is
constantly remodelled by the
resorption of osteoclasts and created by osteoblasts.[9]Osteoclasts
are large cells with multiple nuclei located
on bone surfaces in what are called Howship's lacunae (orresorption
pits). These lacunae are the result of surrounding bone tissue that
has been reabsorbed.[12] Because
the osteoclasts are derived from a monocyte stem-cell lineage,
they are equipped with phagocytic-like
mechanisms similar to circulating macrophages.[9] Osteoclasts
mature and/or migrate to discrete bone surfaces. Upon arrival, active
enzymes, such as tartrate resistant acid
phosphatase, are secreted against
the mineral substrate.[citation needed] The
reabsorption of bone by osteoclasts also plays a role in calcium homeostasis.[12]
Extracellular[edit]
Bones consist of
living cells embedded in a mineralized organic matrix. This matrix consists of
organic components, mainly collagen – "organic" referring to
materials produced as a result of the human body – and inorganic components,
primarily hydroxyapatite and other salts of calcium and phosphate.
Above 30% of the acellular part of bone consists of the organic components, and
70% of salts.[13] The
strands of collagen give bone its tensile strength, and the
interspersed crystals of hydroxyapatite give
bone its compressional strength. These effects are synergistic.[13]
Scanning
electron microscope of bone at 100x magnification
The inorganic
composition of bone (bone mineral) is primarily formed from salts of calcium and phosphate,
the major salt being hydroxyapatite (Ca10(PO4)6(OH)2).[13] The
exact composition of the matrix may change over time and with nutrition, with
the ratio of calcium to phosphate varying
between 1.3 and 2.0 (per weight), and trace minerals such asmagnesium, sodium, potassium and carbonate also
being found.[13]
The organic part of
matrix is mainly composed of Type I collagen.[13][14] Collagen
composes 90–95% of the organic matrix, with remainder of the matrix being a
homogenous liquid called ground
substance consisting of proteoglycanssuch
as hyaluronic acid and chondroitin sulfate.[13] Collagen
consists of strands of repeating units, which give bone tensile strength, and
are arranged in an overlapping fashion that prevents sheer stress. The function
of ground substance is not fully known.[13] Two
types of bone can be identified microscopically according to the arrangement of
collagen:
- Woven
bone, (also known as fibrous bone) which is characterized by a
haphazard organization of collagen fibers and is mechanically weak[15]
- Lamellar
bone, which has a regular parallel alignment of collagen into sheets
("lamellae") and is mechanically strong [15]
Transmission electron micrographof
decalcified woven bone matrix displaying characteristic irregular orientation
of collagen fibers.
Woven bone is produced
when osteoblasts produce osteoid rapidly, which occurs initially in all fetal bones, but is
later replaced by more resilient lamellar bone. In adults woven bone is created
after fractures or in Paget's disease. Woven bone is
weaker, with a smaller number of randomly oriented collagen fibers, but forms
quickly; it is for this appearance of the fibrous matrix that the bone is
termed woven. It is soon replaced by lamellar bone, which is highly
organized in concentric sheets with a much lower proportion of
osteocytes to surrounding tissue. Lamellar bone, which makes its first
appearance in humans in the fetus during the third trimester,[16] is
stronger and filled with many collagen fibers parallel to other fibers in the
same layer (these parallel columns are called osteons). In cross-section, the fibers run in
opposite directions in alternating layers, much like in plywood,
assisting in the bone's ability to resisttorsion forces. After a
fracture, woven bone forms initially and is gradually replaced by lamellar bone
during a process known as "bony substitution." Compared to woven
bone, lamellar bone formation takes place more slowly. The orderly deposition
of collagen fibers restricts the formation of osteoid to about 1 to 2 µm per
day. Lamellar bone also requires a relatively flat surface to lay the collagen
fibers in parallel or concentric layers.[citation needed]
Deposition[edit]
The extracellular
matrix of bone is laid down by osteoblasts,
which secrete both collagen and ground substance. These synthesise collagen
within the cell, and then secrete collagen fibrils. The collagen fibres
rapidly polymerise to
form collagen strands. At this stage they are not yet mineralised, and are
called "osteoid". Around the strands calcium and phosphate precipitate on
the surface of these strands, within a days to weeks becoming crystals of
hydroxyapatite.[13]
In order to mineralise
the bone, the osteoblasts secrete vesicles containing alkaline phosphatase. This
cleaves the phosphate groups and acts as the foci for calcium and phosphate deposition.
The vesicles then rupture and act as a centre for crystals to grow on. More
particularly, bone mineral is formed from globular and plate structures.[17][18]
Types[edit]
There are five types
of bones in the human body: long, short, flat, irregular, and sesamoid.[19]
- Long
bones are characterized by a shaft, the diaphysis,
that is much longer than its width; and by an epiphysis,
a rounded head at each end of the shaft. They are made up mostly of compact
bone, with lesser amounts of marrow,
located within the medullary cavity, and
spongy, cancellous bone. Most bones of the limbs,
including those of the fingers and toes,
are long bones. The exceptions are the eight carpal
bones of the wrist,
the seven articulating tarsal
bones of the ankle and the sesamoid
bone of the kneecap. Long bones such as the clavicle, that
have a differently shaped shaft or ends are also called modified
long bones.
- Short
bones are roughly cube-shaped,
and have only a thin layer of compact bone surrounding a spongy interior.
The bones of the wrist and ankle are short bones.
- Flat
bones are thin and generally curved, with two parallel
layers of compact bones sandwiching a layer of spongy bone. Most of the
bones of the skull are flat bones, as is thesternum.[citation needed]
- Sesamoid
bones are bones embedded in tendons. Since they act to
hold the tendon further away from the joint, the angle of the tendon is
increased and thus the leverage of the muscle is increased. Examples of
sesamoid bones are the patella and the pisiform.[citation needed]
- Irregular
bones do not fit into the above categories. They consist
of thin layers of compact bone surrounding a spongy interior. As implied
by the name, their shapes are irregular and complicated. Often this
irregular shape is due to their many centers of ossification or because
they contain bony sinuses. The bones of the spine, pelvis,
and some bones of the skull are irregular bones. Examples include
the ethmoid and sphenoid bones.[20]
Terminology[edit]
Main article: Anatomical terms of bone
In the study of anatomy,
anatomists use a number of anatomical terms to
describe the appearance, shape and function of bones. Other anatomical terms
are also used to describe the location of bones. Like
other anatomical terms, many of these derive from Latin and Greek.
Some anatomists still use Latin to refer to bones. The term
"osseous", and the prefix "osteo-", referring to things
related to bone, are still used commonly today.
Some examples of terms
used to describe bones include the term "foramen" to describe a hole
through which something passes, and a "canal" or "meatus"
to describe a tunnel-like structure. A protrusion from a bone can be called a
number of terms, including a "condyle", "crest",
"spine", "eminence", "tubercle" or
"tuberosity", depending on the protrusion's shape and location. In
general, long bones are said to have a "head",
"neck", and "body".
When two bones join
together, they are said to "articulate". If the two bones have a
fibrous connection and are relatively immobile, then the joint is called a
"suture".
Development[edit]
The formation of bone
is called ossification. During the fetal stage of development
this occurs by two processes, Intramembranous ossification andendochondral ossification.[citation needed] Intramembranous
ossification involves the creation of bone from connective
tissue, whereas in the process of endochondral ossification bone is
created from cartilage.
Intramembranous
ossification[edit]
Intramembranous
ossification mainly occurs during formation of the flat bones of the skull but also the
mandible, maxilla, and clavicles; the bone is formed from connective tissue
such as mesenchyme tissue rather than from cartilage. The
steps in intramembranous ossification are:[citation needed]
- Development
of ossification center
- Calcification
- Formation
of trabeculae
- Development
of periosteum
Endochondral
ossification[edit]
Endochondral
ossification
Section through a
juvenile knee joint (rat) showing the cartilagineous growth plates
Endochondral
ossification, on the other hand, occurs in long bones and most of the rest of
the bones in the body; it involves an initial hyaline cartilage that continues
to grow. The steps in endochondral ossification are:[citation needed]
- Development
of cartilage model
- Growth
of cartilage model
- Development
of the primary ossification center
- Development
of the secondary ossification center
- Formation
of articular cartilage and epiphyseal plate
Endochondral
ossification begins with points in the cartilage called "primary ossification
centers." They mostly appear during fetal development, though a few short
bones begin their primary ossification after birth. They are
responsible for the formation of the diaphyses of long bones, short bones and
certain parts of irregular bones. Secondary ossification occurs after birth,
and forms theepiphyses of
long bones and the extremities of irregular and flat bones. The diaphysis and
both epiphyses of a long bone are separated by a growing zone of cartilage
(the epiphyseal plate). When the
child reaches skeletal maturity (18 to 25 years of age), all of the cartilage
is replaced by bone, fusing the diaphysis and both epiphyses together
(epiphyseal closure).[citation needed] In
the upper limbs, only the diaphyses of the long bones and scapula are ossified.
The epiphyses, carpal bones, coracoid process, medial border of the scapula,
and acromion are still cartilaginous.[21]
The following steps
are followed in the conversion of cartilage to bone:
- Zone
of reserve cartilage. This region, farthest from the marrow cavity,
consists of typical hyaline cartilage that as yet shows no sign of
transforming into bone.[22]
- Zone
of cell proliferation. A little closer to the marrow cavity, chondrocytes
multiply and arrange themselves into longitudinal columns of flattened
lacunae.[22]
- Zone
of cell hypertrophy. Next, the chondrocytes cease to divide and begin to
hypertrophy (enlarge), much like they do in the primary ossification
center of the fetus. The walls of the matrix between lacunae become very
thin.[22]
- Zone
of calcification. Minerals are deposited in the matrix between the columns
of lacunae and calcify the cartilage. These are not the permanent mineral
deposits of bone, but only a temporary support for the cartilage that
would otherwise soon be weakened by the breakdown of the enlarged lacunae.[22]
- Zone
of bone deposition. Within each column, the walls between the lacunae
break down and the chondrocytes die. This converts each column into a
longitudinal channel, which is immediately invaded by blood vessels and
marrow from the marrow cavity. Osteoblasts line up along the walls of
these channels and begin depositing concentric lamellae of matrix, while
osteoclasts dissolve the temporarily calcified cartilage.[22]
Function[edit]
Functions of Bone
|
Mechanical
|
Synthetic
|
Metabolic
|
Bones have a variety
of functions:
Mechanical[edit]
See also: Skeleton, Human
skeleton and List of bones of the human skeleton
Bones serve a variety
of mechanical functions. Together the bones in the body form the skeleton.
They provide a frame to keep the body supported, and an attachment point
for skeletal muscles, tendons, ligaments andjoints, which function
together to generate and transfer forces so that individual body parts or the
whole body can be manipulated in three-dimensional space (the interaction
between bone and muscle is studied inbiomechanics).
Bones protect internal
organs, such as the skull protecting the brain or the ribs protecting
the heart and lungs. Because of the
way that bone is formed, bone has a high compressive strength of
about 170 MPa (1800kgf/cm²),[3] poor tensile
strength of 104–121 MPa,
and a very low shear stress strength (51.6 MPa).[23][24] This
means that bone resists pushing(compressional) stress well, resist
pulling(tensional) stress less well, but only poorly resists shear stress (such
as due to torsional loads). While bone is essentially brittle,
bone does have a significant degree of elasticity, contributed chiefly
by collagen.
Mechanically, bones
also have a special role in hearing.
The ossicles are
three small bones in the middle ear which are involved in sound
transduction.
Synthetic[edit]
Cancellous bones
contain bone marrow. Bone marrow produces blood cells in a
process called hematopoiesis.[25] Blood
cells that are created in bone marrow include red
blood cells, platelets and white
blood cells.[26] Progenitor
cells such as the hematopoietic stem cell divide
in a process called mitosis to produce precursor cells. These include
precursors which eventually give rise to white
blood cells, and erythroblasts which
give rise to red blood cells.[27]Unlike
red and white blood cells, created by mitosis, platelets are shed from very
large cells called megakaryocytes.[28] This
process of progressive differentiation occurs within the bone marrow. After the
cells are matured, they enter the circulation.[29] Every
day, over 2.5 billion red blood cells and platelets, and 50–100 billion granulocytes are
produced in this way.[10]
As well as creating
cells, bone marrow is also one of the major sites where defective or aged red
blood cells are destroyed.[10]
Metabolic[edit]
- Mineral
storage — bones act as reserves of minerals important for the body, most
notably calcium and phosphorus.[citation needed]
- Growth
factor storage — mineralized bone matrix stores important
growth factors such as insulin-like growth factors, transforming growth
factor, bone morphogenetic proteins and
others.[citation needed]
- Fat storage —
the yellow bone marrow acts as a storage reserve of fatty
acids.[citation needed]
- Acid-base balance — bone
buffers the blood against excessive pH changes by
absorbing or releasing alkaline
salts.[citation needed]
- Detoxification
— bone tissues can also store heavy
metals and other foreign elements, removing them from the
blood and reducing their effects on other tissues. These can later be
gradually released for excretion.[citation needed]
- Endocrine organ — bone
controls phosphate metabolism by releasing fibroblast growth factor – 23 (FGF-23),
which acts on kidneys to reduce phosphate reabsorption.
Bone cells also release a hormone called osteocalcin,
which contributes to the regulation of blood
sugar (glucose) and fat
deposition. Osteocalcin increases both the insulin secretion
and sensitivity, in addition to boosting the number of insulin-producing
cells and reducing stores of fat.[30]
- Calcium
balance—The process of bone resorption by the osteoclasts releases stored
calcium into the systemic circulation and is an important process in
regulating calcium balance. As bone formation actively fixes circulating
calcium in its mineral form, removing it from the bloodstream, resorption
activelyunfixes it thereby increasing circulating calcium
levels. These processes occur in tandem at site-specific locations.[citation needed]
Remodeling[edit]
Main article: Bone
remodeling
Bone is constantly
being created and replaced in a process known as remodeling.
This ongoing turnover of bone is a process of resorption followed by
replacement of bone with little change in shape. This is accomplished through
osteoblasts and osteoclasts. Cells are stimulated by a variety of signals,
and together referred to as a remodeling unit. Approximately 10% of the
skeletal mass of an adult is remodelled each year.[31] The
purpose of remodeling is to regulate calcium homeostasis,
repair microdamaged bones from
everyday stress, and also to shape and sculpt the skeleton during growth.[citation needed].
Repeated stress, such as weight-bearing exercise or
bone healing, results in the bone thickening at the points of maximum stress (Wolff's
law). It has been hypothesized that this is a result of bone's piezoelectric properties,
which cause bone to generate small electrical potentials under stress.[32]
The action of
osteoblasts and osteoclasts are controlled by a number of chemical enzymes that
either promote or inhibit the activity of the bone remodeling cells,
controlling the rate at which bone is made, destroyed, or changed in shape. The
cells also use paracrine signalling to
control the activity of each other.[citation needed] For
example, the rate at which osteoclasts resorb bone is inhibited by calcitonin and
osteoprotegerin. Calcitonin is produced byparafollicular cells in
the thyroid gland, and can bind to receptors on osteoclasts
to directly inhibit osteoclast activity. Osteoprotegerin is secreted by
osteoblasts and is able to bind RANK-L, inhibiting osteoclast stimulation.[33]
Osteoblasts can also
be stimulated to increase bone mass through increased secretion of osteoid and
by inhibiting the ability of
osteoclasts to break downosseous tissue.[citation needed] Increased
secretion of osteoid is stimulated by the secretion of growth
hormone by the pituitary, thyroid
hormone and the sex hormones (estrogens and androgens).
These hormones also promote increased secretion of osteoprotegerin.[33] Osteoblasts
can also be induced to secrete a number of cytokines that
promote reabsorbtion of bone by stimulating osteoclast activity and
differentiation from progenitor cells. Vitamin
D,parathyroid hormone and
stimulation from osteocytes induce osteoblasts to increase secretion of RANK-ligand and interleukin
6, which cytokines then stimulate increased reabsorption of bone by
osteoclasts. These same compounds also increase secretion of macrophage colony-stimulating
factor by osteoblasts, which promotes the differentiation of
progenitor cells into osteoclasts, and decrease secretion of osteoprotegerin.[citation needed]
Bone volume[edit]
Bone volume is
determined by the rates of bone formation and bone resorption. Recent research
has suggested that certain growth factors may work to locally alter bone
formation by increasing osteoblast activity. Numerous bone-derived growth
factors have been isolated and classified via bone cultures. These factors
include insulin-like growth factors I and II, transforming growth factor-beta,
fibroblast growth factor, platelet-derived growth factor, and bone
morphogenetic proteins.[34] Evidence
suggests that bone cells produce growth factors for extracellular storage in
the bone matrix. The release of these growth factors from the bone matrix could
cause the proliferation of osteoblast precursors. Essentially, bone growth
factors may act as potential determinants of local bone formation.[34] Research
has suggested that trabecular bone volume in postemenopausal osteoporosis may
be determined by the relationship between the total bone forming surface and
the percent of surface resorption.[35]
Clinical significance[edit]
See also: Bone
disease
A number of diseases
can affect bone, including arthritis, fractures, infections, osteoporosis and
tumours. Conditions relating to bone can be managed by a variety of doctors,
including rheumatologists for joints, and orthopedic surgeons,
who may conduct surgery to fix broken bones. Other doctors, such asrehabilitation specialists may
be involved in recovery, radiologists in interpreting the findings on
imaging, and pathologists in investigating the cause of the
disease, and family doctors may play a role in preventing
complications of bone disease such as osteoporosis.
When a doctor sees a
patient, a history and exam will be taken. Bones are then often imaged,
called radiography. This might include ultrasound X-ray, CT
scan, MRI scan and other imaging such as a Bone
scan, which may be used to investigate cancer.[36] Other
tests such as a blood test for autoimmune markers may be taken, or a synovial
fluid aspirate may be taken.[36]
Fractures[edit]
Radiography used
to identify possible bone fractures after a knee injury.
Main article: Bone
fracture
In normal bone, fractures occur
when there is significant force applied, or repetitive trauma over a long time.
Fractures can also occur when a bone is weakened, such as with osteoporosis, or
when there is a structural problem, such as when the bone remodels excessively
(such as Paget's disease) or is the site
of the growth of cancer.[37] Common
fractures include wrist fractures and hip
fractures, associated with osteoporosis, vertebral fractures associated
with high-energy trauma and cancer, and fractures of long-bones. Not all
fractures are painful.[37] When
serious, depending on the fractures type and location, complications may
include flail chest,compartment syndromes or fat
embolism. Compound
fractures involve the bone's penetration through the skin.
Fractures and their
underlying causes can be investigated by X-rays, CT
scans and MRIs.[37] Fractures
are described by their location and shape, and several classification systems
exist, depending on the location of the fracture. Fractures in children are
described with the Salter–Harris fracture.[citation needed] When
fractures are managed, pain relief is often given, and the fractured area is
often immobilised. This is to promote bone
healing. In addition, surgical measures such as internal
fixation may be used. Because of the immobilisation, people
with fractures are often advised to undergo rehabilitation.[37]
Tumours[edit]
Main article: Bone
tumour
There are several
types of tumour that can affect bone; examples of benign bone
tumours include osteoma, osteoid
osteoma, osteochondroma, osteoblastoma, enchondroma, giant cell tumor of bone, aneurysmal bone cyst, andfibrous dysplasia of bone.
Cancer[edit]
Main article: Bone
metastases
Cancer can
arise in bone tissue, and bones are also a common site for other cancers to
spread (metastasise)
to.[38] Cancers
that arise in bone are called "primary" cancers, although such
cancers are rare.[38] Metastases
within bone are "secondary" cancers, with the most common being breast
cancer, lung cancer, prostate
cancer, thyroid cancer, and kidney
cancer.[38] Secondary
cancers that affect bone can either destroy bone (called a "lytic"
cancer) or create bone (a "sclerotic" cancer). Cancers
of the bone marrow inside the bone can also affect bone tissue, examples
including leukemia and multiple
myeloma. Bone may also be affected by cancers in other parts of the
body. Cancers in other parts of the body may release parathyroid hormone or parathyroid hormone-related peptide.
This increases bone reabsorption, and can lead to bone fractures.
Bone tissue that is
destroyed or altered as a result of cancers is distorted, weakened, and more
prone to fracture. This may lead to compression of thespinal
cord, destruction of the marrow resulting in bruising, bleeding and immunosuppression,
and is one cause of bone pain. If the cancer is metastatic, then there might be
other symptoms depending on the site of the original cancer. Some bone cancers
can also be felt.
Cancers of the bone
are managed according to their type, their stage,
prognosis, and what symptoms they cause. Many primary cancers of bone are
treated with radiotherapy. Cancers of bone marrow may be treated
with chemotherapy, and other forms of targeted therapy such
as immunotherapy may be used.[39] Palliative
care, which focuses on maximising a person's quality
of life, may play a role in management, particularly if the
likelihood of survival within five years is
poor.
Painful conditions[edit]
Skeletal fluorosis in
a cow's leg, due to industrial contamination
- Osteomyelitis is
inflammation of the bone or bone marrow due to bacterial infection.
- Osteogenesis imperfecta
- Osteochondritis dissecans
- Arthritis
- Ankylosing spondylitis
- Skeletal fluorosis is
a bone disease caused by an excessive accumulation of fluoride in
the bones. In advanced cases, skeletal fluorosis damages bones and joints
and is painful.
Osteoporosis[edit]
Main article: Osteoporosis
Osteoporosis is a
disease of bone where there is reduced bone mineral density, increasing
the likelihood offractures.[40] Osteoporosis
is defined by the World Health Organization in
women as a bone mineral density 2.5standard deviations below
peak bone mass, relative to the age and sex-matched average, as measured
by Dual energy X-ray absorptiometry,
with the term "established osteoporosis" including the presence of
a fragility fracture.[41]Osteoporosis
is most common in women after menopause,
when it is called "postmenopausal osteoporosis", but may develop in
men and premenopausal women in the presence of particular hormonal disorders
and other chronicdiseases or as a result
of smoking and medications,
specifically glucocorticoids.[40] Osteoporosis
usually has no symptoms until a fracture occurs.[40] For
this reason, DEXA scans are often done in people with one or more risk factors,
who have developed osteoporosis and be at risk of fracture.[40]
Osteoporosis treatment
includes advice to stop smoking, decrease alcohol consumption, exercise
regularly, and have a healthy diet. Calcium supplements
may also be advised, as may Vitamin
D. When medication is used, it may include bisphosphonates, Strontium ranelate, and
osteoporosis may be one factor considered when commencing Hormone replacement therapy.[42]
Osteology[edit]
Human femurs and
humerus from Roman period, with evidence of healedfractures
The study of bones and
teeth is referred to as osteology. It is frequently used in anthropology, archeology andforensic
science for a variety of tasks. This can include determining
the nutritional, health, age or injury status of the individual the bones were
taken from. Preparing fleshed bones for these types of studies can involve the
process ofmaceration.
Typically
anthropologists and archeologists study bone
tools made by Homo sapiens and Homo
neanderthalensis. Bones can serve a number of uses such as
projectile points or artistic pigments, and can also be made from external
bones such as antlers.
Other animals[edit]
Main articles: Bird
anatomy and Exoskeleton
Leg and pelvic girdle
bones of bird
Bird skeletons are
very lightweight. Their bones are smaller and thinner, to aid flight. Among
mammals, bats come
closest to birds in terms of bone density, suggesting that small dense bones
are a flight adaptation. Many bird bones have little marrow due to their being
hollow.[43]
A bird's beak is primarily
made of bone as projections of the mandibles which
are covered in keratin.
A deer's antlers are
composed of bone which is an unusual example of bone being outside the body.[44]
The extinct predatory
fish Dunkleosteus had sharp edges of hard exposed
bone along its jaws.[citation needed]
Many animals possess
an exoskeleton that
is not made of bone, These include insects and crustaceans.
Society and culture[edit]
Bones from slaughtered
animals have a number of uses. In prehistoric
times, they have been used for making bone
tools. They have further been used inbone
carving, already important in prehistoric
art, and also in modern
time as crafting materials for buttons, beads, handles, bobbins, calculation
aids, head nuts, dice, poker
chips, pick-up sticks, ornaments, etc. A special genre
is scrimshaw.
Bone
glue can be made by prolonged boiling of ground or cracked
bones, followed by filtering and evaporation to thicken the resulting fluid.
Historically once important, bone glue and other animal glues today have only a
few specialized uses, such as in antiques restoration.
Essentially the same process, with further refinement, thickening and drying,
is used to make gelatin.
Broth is made by
simmering several ingredients for a long time, traditionally including bones.
Ground bones are used
as an organic phosphorus-nitrogen fertilizer and
as additive in animal feed. Bones, in particular after calcination to bone
ash, are used as source of calcium
phosphate for the production of bone
china and previously also phosphorus chemicals.[citation needed]
Bone
char, a porous, black, granular material primarily used for filtration and
also as a black pigment, is produced by charring mammal
bones.
Oracle bone script was a
writing system used in Ancient
china based on inscriptions in bones.
To point
the bone at someone is considered bad luck in some cultures,
such as Australian aborigines, such as by
the Kurdaitcha.
Osteopathic medicine is a
school of medical thought originally developed based on the idea of the link
between the musculoskeletal system and overall health, but now very similar to
mainstream medicine. As of 2012, over 77,000 physicians in the United States are
trained in Osteopathic medicine colleges.[45]
The wishbones of
fowl have been used for divination, and are still customarily used in a
tradition to determine which one of two people pulling on either prong of the bone
may make a wish.
Various cultures
throughout history have adopted the custom of shaping an infant's head by the
practice of artificial cranial deformation.
A widely practised custom in China was that of foot
binding to limit the normal growth of the foot.
See also[edit]
|
Wikimedia
Commons has media related to Bones.
|
|
Wikiquote
has quotations related to: Bone
|
- Artificial bone
- Bone
grafting
- Bone
Health
- Distraction osteogenesis
- Mineralized tissues
- National Bone Health Campaign
References[edit]
- Jump
up^ Steele, D. Gentry;
Claud A. Bramblett (1988). The Anatomy and Biology of the Human
Skeleton. Texas A&M University Press. p. 4. ISBN 0-89096-300-2.
- Jump
up^ Mammal anatomy :
an illustrated guide. New York: Marshall Cavendish. 2010.
p. 129. ISBN 9780761478829.
- ^ Jump
up to:a b Schmidt-Nielsen, Knut (1984).
"Scaling: Why Is Animal Size So Important?". Cambridge:
Cambridge University Press: 6. ISBN 0-521-31987-0.
- Jump
up^ de Buffrénil V.,
Mazin J.-M. (1990). "Bone
histology of the ichthyosaurs: comparative data and functional
interpretation". Paleobiology 16:
435–447.
- Jump
up^ Laurin, M.; Canoville,
A.; Germain, D. (2011). "Bone microanatomy and lifestyle: a
descriptive approach". Comptes rendus Palevol 10 (5–6):
381–402.doi:10.1016/j.crpv.2011.02.003.
- ^ Jump
up to:a b c Deakin
2006, p. 192.
- ^ Jump
up to:a b Deakin
2006, p. 195.
- Jump
up^ Hall, Susan J.
(2007). Basic Biomechanics with OLC. (5th ed.,Revised. ed.).
Burr Ridge: McGraw-Hill Higher Education. p. 88. ISBN 0-07-126041-2.
- ^ Jump
up to:a b c d Deakin
2006, p. 189.
- ^ Jump
up to:a b c Deakin
2006, p. 58.
- Jump
up^ Deakin
2006, pp. 189–190.
- ^ Jump
up to:a b Deakin
2006, p. 190.
- ^ Jump
up to:a b c d e f g h Hall
2005, p. 981.
- Jump
up^ Harrisons
2008, p. 2365.
- ^ Jump
up to:a b Curry,
J.D. 2006. "The Structure of Bone Tissue" Bones:
Structure and Mechanics Princeton U. Press. Princeton, NJ. pps:
12–14
- Jump
up^ Salentijn, L. Biology
of Mineralized Tissues: Cartilage and Bone, Columbia
University College of Dental Medicine post-graduate
dental lecture series, 2007
- Jump
up^ Bertazzo, S. &
Bertran, C. A. (2006). "Morphological and dimensional
characteristics of bone mineral crystals". Bioceramics. 309–311
(Pt. 1, 2): 3–10.doi:10.4028/www.scientific.net/KEM.309-311.3.
- Jump
up^ Bertazzo, S.;
Bertran, C.A.; Camilli, J.A. (2006). "Morphological Characterization
of Femur and Parietal Bone Mineral of Rats at Different
Ages". Key Engineering Materials. 309–311: 11–14.doi:10.4028/www.scientific.net/KEM.309-311.11.
- Jump
up^ "Types
of bone". Retrieved 6 February 2016.
- Jump
up^ Pratt, Rebecca. "Bone
as an Organ". AnatomyOne. Amirsys, Inc.
Retrieved2012-09-28.
- Jump
up^ Agur, Anne
(2009). Grant's Atlas of Anatomy. Philadelphia: Lippincott,
Williams, and Wilkins. p. 598. ISBN 978-0-7817-7055-2.
- ^ Jump
up to:a b c d e Saladin,
Kenneth (2012). Anatomy and Physiology: The Unity of Form and
Function. New York: McGraw-Hill. p. 217. ISBN 978-0-07-337825-1.
- Jump
up^ "click the pdf
lecture for 'topic 3: Structure and Mechanical Properties of Bone'". http://cmrg.ucsd.edu/Courses/be112a/Topics. External
link in|website= (help);
- Jump
up^ Turner, C.H.; Wang,
T.; Burr, D.B. (2001). "Shear Strength and Fatigue Properties of
Human Cortical Bone Determined from Pure Shear Tests".Calcified
Tissue International 69 (6): 373–378. doi:10.1007/s00223-001-1006-1. PMID 11800235.
- Jump
up^ Fernández, KS; de
Alarcón, PA (December 2013). "Development of the hematopoietic
system and disorders of hematopoiesis that present during infancy and
early childhood.". Pediatric clinics of North America 60 (6):
1273–89. doi:10.1016/j.pcl.2013.08.002. PMID 24237971.
- Jump
up^ Deakin
2006, p. 60-61.
- Jump
up^ Deakin
2006, p. 60.
- Jump
up^ Deakin
2006, p. 57.
- Jump
up^ Deakin
2006, p. 46.
- Jump
up^ Lee, Na Kyung; et al.
(10 August 2007). "Endocrine
Regulation of Energy Metabolism by the Skeleton" (PDF). Cell 130 (3):
456–469.doi:10.1016/j.cell.2007.05.047. PMC 2013746. PMID 17693256.
Retrieved 2008-03-15.
- Jump
up^ Manolagas, SC (April
2000). "Birth and death of bone cells: basic regulatory mechanisms
and implications for the pathogenesis and treatment of
osteoporosis.". Endocrine Reviews 21 (2):
115–37.doi:10.1210/edrv.21.2.0395. PMID 10782361.
- Jump
up^ ed, Russell T.
Woodburne ..., consulting (1999). Anatomy, physiology, and metabolic
disorders (5. print. ed.). Summit, N.J.: Novartis Pharmaceutical
Corp. pp. 187–189. ISBN 0-914168-88-6.
- ^ Jump
up to:a b Boulpaep,
Emile L.; Boron, Walter F. (2005). Medical physiology: a cellular
and molecular approach. Philadelphia: Saunders. pp. 1089–1091.ISBN 1-4160-2328-3.
- ^ Jump
up to:a b Mohan,
S.; Baylink, D. J. (1991). "Bone growth factors". Clinical
Orthopaedics and Related Research (263): 30–48. doi:10.1097/00003086-199102000-00004. PMID 1993386.
- Jump
up^ Nordin, BE; Aaron, J;
Speed, R; Crilly, RG (Aug 8, 1981). "Bone formation and resorption
as the determinants of trabecular bone volume in postmenopausal
osteoporosis". Lancet 2 (8241): 277–9. doi:10.1016/S0140-6736(81)90526-2. PMID 6114324.
- ^ Jump
up to:a b Britton
2010, pp. 1059–1062.
- ^ Jump
up to:a b c d Britton
2010, pp. 1068.
- ^ Jump
up to:a b c Britton
2010, pp. 1125.
- Jump
up^ Britton
2010, pp. 1032.
- ^ Jump
up to:a b c d Britton
2010, pp. 1116–1121.
- Jump
up^ WHO (1994).
"Assessment of fracture risk and its application to screening for
postmenopausal osteoporosis. Report of a WHO Study
Group". World Health Organization technical report series 843:
1–129. PMID 7941614.
- Jump
up^ Britton, the editors
Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston ; illustrated
by Robert (2010). Davidson's principles and practice of
medicine.(21st ed.). Edinburgh: Churchill Livingstone/Elsevier.
pp. 1116–1121.ISBN 978-0-7020-3085-7.
- Jump
up^ Dumont, E. R. (17
March 2010). "Bone density and the lightweight skeletons of
birds". Proceedings of the Royal Society B: Biological
Sciences 277 (1691): 2193–2198. doi:10.1098/rspb.2010.0117.
- Jump
up^ Hans J. Rolf; Alfred
Enderle (1999). "Hard fallow deer antler: a living bone till antler
casting?". The Anatomical Record 255 (1):
69–77.doi:10.1002/(SICI)1097-0185(19990501)255:1<69::aid-ar8>3.0.CO;2-R69::aid-ar8>.PMID 10321994.
- Jump
up^ "2012
OSTEOPATHIC MEDICAL PROFESSION REPORT" (PDF).Osteopathic.org.
American Osteopathic Organisation. Retrieved 26 November2014.
Footnotes[edit]
- Katja
Hoehn; Marieb, Elaine Nicpon (2007). Human Anatomy & Physiology
(7th Edition). San Francisco: Benjamin Cummings. ISBN 0-8053-5909-5.
- Bryan
H. Derrickson; Tortora, Gerard J. (2005). Principles of anatomy and
physiology. New York: Wiley. ISBN 0-471-68934-3.
- Britton,
the editors Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston ;
illustated by Robert (2010). Davidson's principles and practice of
medicine.(21st ed.). Edinburgh: Churchill Livingstone/Elsevier. ISBN 978-0-7020-3085-7.
- Deakin,
Barbara Young; et al. (2006). Wheater's functional histology : a
text and colour atlas (5th ed.). [Edinburgh?]: Churchill
Livingstone/Elsevier.ISBN 978-0-443-068-508. -- drawings by Philip J.
- Hall,
Arthur C.; Guyton, John E. (2005). Textbook of medical
physiology (11th ed.). Philadelphia: W.B. Saunders. ISBN 978-0-7216-0240-0.
- Anthony,
S. Fauci; Harrison, T.R.; et al. (2008). Harrison's principles of
internal medicine (17th ed.). New York [etc.]: McGraw-Hill
Medical. ISBN 978-0-07-147692-8. -- Anthony edits the current version;
Harrison edited previous versions.