۱۳۹۴ اسفند ۱۲, چهارشنبه

زیبق، جیوه، زیوه، ژیوه، سیماب...دیده‌ام می‌جُست و گفتندم نبینی روی دوست عاقبت معلوم کردم کاندر او سیماب داشت... زیبقم در گوش کن تا نشنوم یا درم بگشای تا بیرون روم

[1] - زیبق . [ ب َ / زَ ب َ ] (معرب ، اِ) معرب جیوه که بمعنی سیماب است . (غیاث ). معرب زیوه که جیوه به جیم تازی مبدل و سیماب مرادف آن است . (آنندراج ). زئبق . معرب ژیوه (جیوه ). (فرهنگ فارسی معین ). مأخوذ از زئبق عربی ، سیماب و جیوه . (از ناظم الاطباء). در اصطلاح ارباب صناعت کیمیا، یکی از ارواح باشد. (مفاتیح ، یادداشت بخط مرحوم دهخدا). معرب ژیوه و جیوه . (یادداشت ایضاً). سیماب . (دهار). به فارسی سیماب و جیوه نامند. از جمله ٔ فلزات و معدنی است شبیه به نقره ای گداخته و از گداز سنگهای سرخ شنجرفی بهم می رسد و در بعضی بلاد بارده مثل مغرب و روم و اقلیم هفتم قطراتی است که از خاک متکون می گردد و در غیر ظروف شیشه و سرب و قلعی و جلد سگ آبی و طلا نقره معدوم میشود... و چون غیرمفتول او را با نقره ٔ خالص حل نموده بر مس بمالند و به آتش برند مس را مفضض گرداند. (تحفه ٔ حکیم مؤمن ). جسمی است فلزی بصورت مایع برنگ نقره ای که بزبان عامیانه «ویف -ارژان » نامند و چون با فلز دیگری ترکیب شود آنرا ملغمه نامند. این فلز اغلب در طبیعت بصورت سولفور یافت می شود وآنرا «سینابر» خوانند که آن را پس از حرارت دادن در کوره بکار برند. در اتریش و کالی فرنیا و اسپانی یافت میشود. علامت آن در شیمی «Hg» و وزن مخصوص آن 13/59 است . سفید و درخشان است و تنها فلزی است که در طبیعت بصورت مایع در حرارت معمولی یافت میشود. این فلزدر برودت «40-» درجه ٔ سانتی گراد منجمد میشود و در حرارت 357 درجه ٔ سانتی گراد به جوش می آید و در فیزیک برای ساختن میزان الهوا و میزان الحراره و دیگر چیزها مورد استفاده قرار دهند و نیز در سفیدگری و ساختن آیینه و مخصوصاً در استخراج زر و سیم که بسهولت با این دو فلز ترکیب میشوند، استفاده می کنند. این فلز همچنین در پزشکی نیز مورد استعمال دارد. ولی تمام نمک های این فلز زهرناک است و جذب آن موجب مسمومیت میشود. (از لاروس ). ... جیوه را چینی و هندیهای قدیم می شناختندو در مقبره های مصری در حدود 1500 سال قبل از میلاد مشاهده شده است . کانه ٔ عمده ٔ آن شنجرف است . از معادن الماذن (المعدن ) بیش از 2500 سال است که بلاانقطاع شنجرف استخراج شده است . قوس جیوه عبارت است از تخلیه ٔ برق در بخار جیوه ٔ محتوی در یک لوله ٔ خلأ و از سرشارترین منابع تشعشعات فوق بنفش است . در عادی ترین شکل آن ، یکی از الکترودها از جیوه است و در محفظه ٔ مناسبی در انتهای یک لوله ٔ کوارتزی جا دارد. چون این لوله هامعمولاً با ولتاژ معتدلی کار می کنند باید قبلاً روانه ٔ (جریان ) موقتی از جیوه ، از یک الکترود به الکترود دیگر وارد لوله کرد. در نتیجه ٔ این عمل ، جیوه هادی برق و داغ میشود و لوله را از بخار جیوه پر میکند، پس از آن جریان را قطع می کنند و قوس بر جا می ماند. مورد استعمال عمده ٔ آن برای تبدیل جریان متناوب برق است به جریان مستقیم . برای ضدعفونی کردن آب و در عکاسی نیز بکار می رود. (از دائرة المعارف فارسی ). رجوع به اختیارات بدیعی و تحفه ٔ حکیم مؤمن و الفاظالادویه و ترجمه ٔ صیدنه و لکلرک و جیوه در همین لغت نامه شود.
زیبق اصفر ؛ یاسمین زرد است . (تحفه ٔ حکیم مؤمن ).
//////////////////
جیوه . [ جی وَ / وِ ] (اِ) ژیوه . سیماب . زیبق . فرار. آبک . معرب پهلوی زیوندک (زنده ). فلزی است بصورت مایعی بسیار سنگین ،وزن مخصوص آن 13/6، سیمین فام و درخشان (بهمین مناسبت آنرا سیماب گویند). در 38/9 منجمد شود و در 357 درجه بجوش آید. ابوالارواح . (فرهنگ فارسی معین ). سیماب را گویند، سرد و تر است در دویم شپش و کنه را بکشد، جرب و حکه را نافع باشد. تصعید آن به این طریق کنند که بستانند سیماب را و با نیم وزن آن قلعی داخل کنندو به وزن هر دو زاج سوخته و به وزن زاج خشت پخته و به وزن مجموع تلک بریان کرده که آلوچه ٔ کوهی باشد و همه را در صلایه انداخته با آب ترنج و آن میوه ایست معروف بسایند تا نیک سائیده شود بعد از آن در دیگی نو که بگل اندوده باشند کرده سر آنرا محکم ببندند و آهسته آهسته آتش کنند تا بریان شود و همچنین هفت نوبت با آب ترنج بسایند و در دیگ کنند و بریان سازند بعد از آن در شیشه ای که بگل علکت اندوده باشد، کنند و آتش نرم نرم میکرده باشند تا تصعید کند و همچنین سه مرتبه تصعید کنند تا آنکه مانند دانه ٔ مروارید سفید گردد وآن سم قاتل است و بکارهای دیگر نیز آید. (برهان ).
////////
جیوهعنصری نقره‌ای‌رنگ که در حرارت متعارفی مایع می‌شود و در ۴۰ درجه زیر صفر منجمد می‌گردد. در ساختن بارومتر و برای جیوه دادن آیینه به‌کار می‌رود. از مادۀ معدنی سرخ‌رنگی به نام شنجرف به‌دست می‌آید. هرگاه شنجرف را حرارت بدهند جیوه به‌صورت بخار از آن خارج می‌شود و آن را در ظرف‌های مخصوص سرد می‌کنند و بعد جمع‌آوری می‌کنند. گاهی هم به حالت خالص در طبیعت پیدا می‌شود؛ سیماب؛ آبک؛ زیبق؛ مرکور.
/////////////////
زیبق‌.  بپارسی سیماب بود وی را نام بسیار بود و به لغت اکسیریان الفیان، الغبیط، الزمزم، الحی، الما، السحاب، النور، الزوادوق، الروحانی، عین الحیوان، اللبن، الحل، الدهن، الابق، القرار الروح، الفافه، الطیار این مجموع بزبان اکسیریان است و ابن مؤلف گوید بزبان اکسیریان چند اسم دیگر دارد همچون: لبان، عطارد، فیدانق، برق، ثقیل، حسد، ماء حیات، عیان، فیبرلا، ماء الشمس، ملک الارض، ماء المداف، العبد الغطایه، الحیه، و العذرا چون مصعد نباشد این اسمها دارد و چون مصعد باشد طلق الحاجی، قندیل الیحروم، رکبة الاسد و بشیرازی حیات و بهترین آن بود که زنده بود و استعمال نکرده باشد بغایت جهنده بود اگر در پاره کرباس کنند و بیفشارند تا بیرون آید و کرباس سیاه شده باشد استعمال کرده باشد طبیعت زیبق گرم و محرق باشد و گویند سرد و تر بود در دوم و وی مصدع و قابض بود مقتول وی جهت قتل شپش خصوصیتی دارد و با قردان حیوانات همچنین بکنند و قردان را بشیرازی کنه خوانند با روغن گل جهت جرب و کله نافع بود و خاک وی چون با شراب بسرشند موش را بکشد و چون با سرکه بر جرب و حکه طلا کنند نافع بود و دخان وی رنجها پدید کند مانند فالج و کری و عقل زایل کند و چشم تاریک کند و لون زرد کند و جستن اندامها پیدا کند و بوی دهن و خشکی دماغ و در موضعی که دود وی برود مار و عقرب و گزندگان بگریزند و بمیرند و زیبق مصعد کشنده بود و اگر زیبق در گوش کسی ریزند اختلاط عقل پیدا کند و باشد که بصرع و سکته کشد و مداوای وی آن بود که میلی از رصاص در گوش او کنند تا زیبق بر وی چسبیده بیرون آورد و آنچه مصعد بود نه مقتول چون بیاشامند در حال از شیب بیرون آید و مضرت بسیار نرساند چون زنده بود علاج کسی که زیبق خورده باشد مانند علاج کسی بود که مردار سنگ خورده باشد و مولف گوید صفت تصعید آن بسیار است این یک نوع گفته شود بستانند زیبق و بیامیزند و با نیم وزن آن اسرب یا قلعی و بسایند با همچندان زاج سوخته یا همچندان خشت پخته و بوزن مجموع نمک بریان کرده و همه را بر صلایه بسایند و آب حماض اترج بر آن بریزند و آهسته بسایند تا بغایت سوده گردد پس آن را بریان کنند با آتش نرم و به شیشه گل‌اندود کنند یا دیگی بگل اندوده کنند و سربسته بآتش نرم بریان کنند و دیگر بار بسایند یک روز و نیم بحماض اترج و دیگر بریان کنند بآتش نرم و هفت نوبت چنین کنند بعد از آن بسایند و در شیشه بگل حکمت اندوده کنند و تصعید کنند سه نوبت تا سفید شود مانند دانه مروارید و آن سم قاتل مهلک بود و الله اعلم بالصواب
______________________________
صاحب مخزن الادویه می‌نویسد: زیبق بکسر زا بفارسی سیماب و جیوه و بهندی پاره و بفرنگی سلوامون نامند
لاتین‌MERCURIUS فرانسه‌MERCURE انگلیسی‌QUICK SILVER
اختیارات بدیعی، ص: 215
/////////////
جیوه، ژیوه[۱][۲][۳] یا سیماب[۴] نام یک عنصر شیمیایی با نماد Hg و عدد اتمی ۸۰ است. جیوه در زبان فارسی به معنی زنده و در زبان‌های دیگر نیز با نام‌های نقرهٔ زنده یا hydrargyrum هم شناخته می‌شود. در یونانی "hydr" به معنی آب و "argyros" به معنی نقره است. جیوه یک عنصر سنگین بلوک دی است و تنها فلزی است که در شرایط استاندارد دما و فشار مایع است. عنصر دیگری که در این شرایط مایع باشد، برم است. فلزهای دیگر مانند سزیم، فرانسیم، گالیم و روبیدیمدر دمایی بالاتر از شرایط استاندارد ذوب می‌شوند. جیوه با دمای ذوب −۳۸٫۸۳ °C و نقطهٔ جوش ۳۵۶٫۷۳ °C دارای درازترین بازهٔ مایعی در میان فلزات است.[۵][۶][۷]
رسوب‌های جیوه در سراسر زمین پیدا می‌شود، اما بیشتر به صورت شنگرف (سولفیدهای جیوه) این رنگدانهٔ قرمز شنگرفیبیشتر از راه کاهش شنگرف بدست می‌آید. شنگرف بسیار سمّی است بویژه اگر گرد و غبار آن بوییده یا خورده شود. راه دیگر مسمویت جیوه قرار گرفتن در برابر ترکیب‌های حل شدنی جیوه در آب است مانند کلرید جیوه(II) یا متیل‌جیوه، تنفس بخار جیوه یا خوردن خوراک‌های دریایی آلوده به جیوه.
جیوه در دماسنج، فشارسنج (بارومتر، مانومتر)، فشارسنج خون، کلید جیوه‌ای، شیرهای شناور و دیگر ابزارها. البته به دلیل زهرآگین بودن این عنصر، تلاش شده تا از فشارسنج‌های خون و دماسنج‌های جیوه‌ای در بیمارستان‌ها پرهیز شود و بجای آن از ابزارهای الکلی، آلیاژهای اوتکتیک مانند گالینستان، ابزارهای الکترونیکی یا با پایهٔ ترمیستور بهره برده شود. اما همچنان کاربرد جیوه در زمینهٔ پژوهش و ساخت مواد آمالگام دندانی برای پرکردن دندانها پابرجا است. جیوه کاربرد نوری هم دارد: اگر جریان الکتریسیته از بخار جیوهٔ درون یک لولهٔ فسفری گذرانده شود، موج‌های کوتاه فرابنفش پدید می‌آید در اثر این موج‌ها فسفر به درخشش می‌افتد و نور مرئی تولید می‌شود (مانند لامپ مهتابی).
/////////////
الزئبق عنصر كيميائي له الرمز Hg والعدد الذري 80 في الجدول الدوري، وهو سائل فضي، كثافته (13.54 غ/سم3)، يتجمد بلون فضي مائل للزرقة يشبه الرصاص في مظهره وذلك عند (-38.9 درجه مئوية)، ويغلي عند (356.9 درجة مئوية).
عند إمرار شرارة كهربائية في بخار الزئبق، ينبعث منه وميض مبهر، وأشعة فوق بنفسجية.
عـند درجة حرارة (-269 درجة مئوية) يصبح الزئبق كُـثـَافه - لاحظ هنا أن درجة (-271 درجة مئوية هي درجة حرارة السحب الركامية التي تخلفت عن الانفجار الكونى وهي التي تطلق أشعة ميكروويف خلفية الكون (C.M.B.).
و بالتالى يصبح الزئبق (موصلآ فائقأ) - آى تنعدم مقاومته للتيار الكهربى ؛ بينما درجة حرارة الصفر المطلق هي(-273.16 درجة مئوية) وهي درجة الحرارة التي تتوقف عندها حركة الجزيئات.
إن الصفة غير العادية لحالة التوصيل الفائق لا تكمن فقط في انعدام مقاومة التيار الكهربى، وإنما إيضا في إنتاج مجالات مغناطيسية شديدة بدون استخدام ملفات ذات قلوب حديدية، كما يمكن تخزين الكهرباء بداخلها.
محتويات
  [أظهر
التاريخ[عدل]
لا يعرف من الذي اكتشفه ولكنه كان معروفا لدى القدماء المصريين والصينيين والهندوس والاغريق والرومان.ولقد سمي في الاساطير الرومانية القديمة (بساعي الالهة السريع). وكلمة الزئبق معرب زیوَه الفارسية،[1][2] ومثله ژیوه وجیوه. سمي أيضا الزاووق، وضرب به المثل في الثقل.[3] وقد ذكره البيروني في كتابه الجماهر في معرفة الجواهر وخصص له قسما.
ولغةً يُقال عن الشخص زئبقيٌّ إذا كان كثير التهرُّب[4]
نظائر الزئبق[عدل]
للزئبق عشرة نظائر، سبعة منها مستقرة، ثم نظير غير مستقر، ونظيران ينتجان أشعة بيتا السالبة، وأحد هذين النظيرين صناعي وهذه النظائر هي:
·         (80 بق 196) وهو نظير وجوده في الطبيعة 0.1%، (80 بق 198) وهو نظير وجوده في الطبيعة 10%، (80 بق 199)، (80 بق 200)، (80 بق 201)، (80 بق 202)، و(80 بق 204) ؛ جميعها نظائر مستقرة في الطبيعة.
·         (80 بق 197) نظير غير مستقر في الطبيعة، حيث يتحول إلى ذهب، كما يلى :
80 بق> 79 ذ 197 + 1 ش 0
·         (80 بق 203) نظير طبيعى يشع أشعة بيتا السالبة، (80 بق 205) نظير صناعي يشع إيضا أشعة بيتا السالبة ؛ وأما النظير الطبيعى فلونه فضى يميل إلى اللون الرصاصي الغامق، أما النظير الصناعي فنظيره يميل للون أكسيد الزئبق الأحمر مع كونه سائل ميتالك.
الزئبق المشع نوعان نوع روسى هو النظير الصناعي المشع، ونوع مصري يقال عنه الفرعوني وهو النوع المشع الطبيعى، ولكنه مفصول كثافيا ونقى جدا. ويصل الجرام فيه إلى 300.000 دولار كما يتحدث عنه بعض الأشقياء.
الزئبق والمياه[عدل]
حتى الآن, لم يكتشف العلماء أن جسم الإنسان يحتاج لأي كمية من الزئبق, بل بالعكس فهو شديد السمية ويتراكم في الدماغ حيث قد يتسبب في تدمير الجهاز العصبي. لذلك ينصح بتجنب ملامسة الزئبق وحمله في اليد وكذلك ينصح بتجنب الاقتراب منه لتفادي استنشاق بخار الزئبق حيث أنه سريع التبخر. ويقدر نصف العمر للزئبق في الدماغ ب 230 يوم وفي بقية الجسم 70 يوما.
يشكل الزئبق أكبر ملوث لمياه المحيطات, البحار, الأنهار, والبحيرات والغريب في الأمر أن جزء كبير من هذا التلوث يأتي من الطبيعة نفسها وليس من المخلفات الصناعية. فسنوياً ينطرح ما يقدره بعض المختصين بـين 4000 وَ 10000 طن من الزئبق في البحار, 40 % منها تقريبا طن من أسباب طبيعية مثل البراكين والنحت الطبيعي للصخور المتضمنة للزئبق والباقي من المخلفات الصناعية وخصوصاً حرق القمامة واستهلاك الفحم الحجري وصنع الاسمنت
مثله مثل الماء, يتبخر الزئبق وينتشر مع الهواء وقد يسافر إلى أماكن بعيدة جداً لكنه في النهاية يترسب في البحار والبحيرات وهنا تكمن المشكلة ذلك لأن الأسماك تمتص هذا الفلز ليتخزن في جسمها.
تلوث الأسماك[عدل]
لذلك يجب الحذر عند استهلاك الاسماك ومعرفة من أين تم اصطيادها لتفادي الأماكن الملوثة ربما مثل البحر الأبيض المتوسط والخليج العربي.
كيفية الحذر[عدل]
يقاس مستوى الزئبق في الطعام مثل باقي المعادن والأملاح بجزء لكل مليون
ويعتبر مستوى الخطر لفتاة وزنها 60 كيلوغرام هو 6 مايكرو غرام من الزئبق يومياً. فلو كان مستوى الزئبق في التونة البيضاء الخفيفة المعلبة هو 0.35 جزء لكل مليون (مايكروغرام لكل غرام سمك) فإنها تستطيع أن تأكل حوالي 17 غرام من التونا يومياً (بدون أي اسماك أخرى) أو وجبة أسبوعية مقدارها 120 غرام
أما زيوت السمك فتحتوي على كميات متناهية في الصغر من الزئبق وذلك لأنه يذوب في الماء وليس في الدهن.
تحضير الزئبق[عدل]
يحضر الزئبق بواسطة تسخين كبريتيد الزئبق (HgS) في الهواء وثم تكثيف البخار الناتج.
HgS + O_{2} \rarr Hg + SO_{2}
استخدامات الزئبق[عدل]
الطب[عدل]
يدخل الزئبق ومركباته في العديد من الاستخدامات، حيث يستعمل في المجالات الصناعية مثل إنتاج مواد كغاز الكلور وصناعات الورق والكهربائية مثل إنتاج المصابيح والبطاريات والكيماوية مثل صناعات الأصباغ وغيرها والصيدلانية مثل صناعة بعض العقاقير والطبية مثل استعماله في صنع حشوات الاسنان والعلمية مثل إنتاج المحاليل وكذلك إنتاج مبيدات الفطريات الطبية والعلاجية التراثية أو الشعبية. وقد ثبت اليوم عدم صحة الكثير من طرق استخداماته التقليدية وخطرها على الصحة.
إنتاج الذهب[عدل]
يستخدم في استخلاص الذهب من خاماته عن طريق الاتحاد معه وتكوين ما يعرف باسم الملغمة.
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Barometer_mercury_column_hg.jpg/220px-Barometer_mercury_column_hg.jpg
جهاز قياس ضغط الهواء باستخدام الزئبق
https://upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Germicidal_UV_discharge_tube_glow.jpg/220px-Germicidal_UV_discharge_tube_glow.jpg
استخدام الزئبق في بعض أنواع الإضاءة العالية
Skull and crossbones.svg
https://upload.wikimedia.org/wikipedia/commons/thumb/8/86/Mercury-element.jpg/240px-Mercury-element.jpg
الزئبق
إنتاجه[عدل]
يتم الحصول على الزئبق من خام السنابار (الزنجفر) حيث يجهز أولاً ثم يركز بواسطة الغسل والتعويم، وعند الانتهاء من تهيئة الخام فإنه يحمص وذلك بتعريضه لتيار من الهواء عند درجة حرارة معينة، فيتأكسد وينتج الزئبق على هيئة بخار حيث يتم تكثيفه. ويمكن أن يستخدم الحديد أو أكسيد الكالسيوم بدلاً من الهواء وذلك لإجراء عملية التحميص. يخضع الزئبق المنتج بعد ذلك لعمليات تنقية بواسطة حــامض النيتروجين أو بعض الأحماض الأخرى. وأثناء تلك العمليات فإن الهواء المصاحب يخرج على هيئة فقاعات، ويمكن تنقية الزئبق باستخدام طرق أخرى كالتقطير حيث تصل نقاوته إلى 99.9% . ويمــــكن الكشف عن الزئبق بتسخين المادة المشتبه في احتوائها على الزئبق باستعمال كربونات الصوديوم اللامائية في وعــــاء زجاجي صغير وفي حالة احتواء تلك المــــادة على الزئبق فإنه يتــــكثف على شـــكل قطرات كروية .
انظر أيضا[عدل]
·         الزئبق الأحمر
·         زئبق في الأسماك
مراجع[عدل]
1.       ^ أ.-ش. إبراهيم، ص. 72
2.       ^ لغت نامه دهخدا
3.       ^ لغت نامه دهخدا
4.       ^ معجم اللغة العربية المُعاصِر
·         إبراهيم أدي شير. الألفاظ الفارسية المعربة. الطبعة الثانية 1987-88
////////////
به پنجابی و سندی و اردو، پاره:
پاره يو کيميايي عنصر دی چې سمبول یېHg او اټومي شمېره ېې ۸۰ ده. دغه عنصر د سپينوب او سيماب په نومونو هم يادېږي. او همداسې د هايډرارگېرم ورته وايي. چې هايډر د اوبو مانا لري او ارگېروس د سپينو زرو مانا لري. پاره يوازينۍ فلز دی چې په معينه حالت کې په معينې تودوخې او ځانگړي پشار سره اوبه کیږي. همدارنگه بل عنصر چې ځانتيا ېې د پارې په ډول يو حالت لري بروماين نومېږي.[1] ددې سړـ پوله ۳۸.۸۳ c ډگري سلسيوس او ايشنپوله ـ ۳۵۶.۷۳ c ډگري سلسيوس دی .
//////////////
به عبری:
כספית (ביוונית בהשפעת לטינית: Hydrargyrum) היא יסוד כימי מסדרת מתכות המעבר שסמלו הכימי Hg ומספרו האטומי 80. זוהי המתכת היחידה אשר מצב הצבירה שלה בתנאים סטנדרטיים הוא נוזל.
///////////////
به کردی زیوه:

زیوە (بە ئینگلیزیMercury) (بە فارسیجیوه، ژیوه، سیماب) یەکێکە لە توخمە کیمیاییەکان، هێماکەی (Cu) و گەردیلەی ژمارە (٢٩)یە. زیو كانزایه‌كی نایابه‌, ڕه‌نگی سپییه‌, كانزایه‌كی به‌نرخه‌,له‌دێر زه‌مانه‌وه‌ ناسراوه‌, میسرییه‌ كۆنه‌كان و عه‌ره‌به‌كان و چینییه‌كان به‌كاریان هێناوه‌ له‌ دروستكردنی خشڵ و كارى پزیشكی و خۆپاراستن له‌ نه‌خۆشی. هه‌روه‌ها به‌كاردێ له‌ دروستكردنى دراو (پاره‌) و خشڵ وه‌ك زێڕ به‌ڵام به‌هاكه‌ی كه‌متره‌. توخمی زیو : زیو توخمێكه‌ هێماكه‌ی (Ag)یه‌ كه‌ كورتكراوه‌ی وشه‌ی (Argentum) ی لاتینییه‌, كه‌ له‌ ناوی وڵاتی ئه‌رجه‌نتین وه‌رگیراوه‌ چونكه‌ به‌ بڕێكی زۆر زیوی لێ دۆزرایه‌وه‌. زیو توخمێكی به‌نرخه‌, به‌زۆر شێوه‌ له‌ سروشتدا هه‌یه‌ وه‌ك كانزای خاوێن له‌ نه‌رویژ و كه‌نه‌دا, وه‌ له‌ پیرۆ له‌ شێوه‌ی كانزای ئه‌رجێنت (Ar2S ) , له‌ شێوه‌ى كلۆریدی زیو له‌ مه‌كسیك و كه‌نه‌دا , زیو به‌تێكه‌ڵی له‌گه‌ل كانزای تری وه‌ك زێڕ و مس و قوڕقوشم هه‌یه‌. به‌كارهێنانه‌كانی زیو : زیو توانایه‌كی زۆری هه‌یه‌ بۆ له‌ناوبردنی به‌كتریا و ورده‌ زینده‌وه‌ر و سه‌وزایی ئاو (قه‌وزه‌) له‌به‌ر ئه‌وه‌ عه‌ره‌به‌كان له‌ خاوێنكردنه‌وه‌ی ئاو به‌كاریان ده‌هێنا, كه‌ ئاو له‌ناو مه‌شكه‌ی دروستكراو له‌ پێستی ئاژه‌ڵ ده‌كرا تا سێ چاره‌كی و چاره‌گه‌كه‌ی تر هه‌وا بوو , چه‌ند پارچه‌یه‌ك له‌ دراووی زیوی ده‌كرایه‌ ناو مه‌شكه‌كه‌ له‌كاتی گه‌شته‌ دوورو درێژه‌كان, كه‌ مه‌شكه‌كه‌ ده‌له‌رزی پارچه‌ دراووه‌ زیوییه‌كان لێك ده‌خشان به‌مه‌ش به‌شێكى زۆر كه‌م له‌ زیوه‌كه‌ ده‌تواوه‌ له‌ ئاوه‌كه‌ به‌شێوه‌ی پۆدره‌ی زۆر ورد كه‌ ده‌بێته‌ هۆی له‌ناوبردنی به‌كتریا و خاوینبوونه‌وه‌ی ئاو. به‌كارهێنانی زیو له‌خاوێنكردنه‌وه‌ی ئاو : ئێستا ده‌توانرێ زیو به‌كاربهێنرێ له‌خاوێنكردنه‌وه‌ی ئاو له‌جیاتی كلۆر كه‌بۆ ته‌ندروستی باش نییه‌.تۆژینه‌وه‌كان ئه‌وه‌ده‌سه‌لمێنن كه‌بڕی زیوی به‌كارهاتوو له‌خاوێنكردنه‌وه‌ى ئاو كه‌متره‌ له ‌یه‌ك له ‌بلیۆن واته ‌یه‌ك مللی گرام له‌زیو بۆ یه‌ك مه‌تر سێ جا له‌ ئاو, واته‌ بڕی پاره‌ى پێویست بۆ خاوێنكردنه‌وه‌ی یه‌ك مه‌تر سێ جا له‌ ئاو ته‌نها نیو قرشی میسرییه‌,كه‌چى هی كلۆر سێ قرشه‌, له‌گه‌ل مه‌ترسییه‌كانی كلۆر له‌سه‌ر كاركه‌رو دانیشتوانى ده‌وروبه‌ر له‌گازی كلۆر كه‌ده‌بێته‌هۆی شێرپه‌نجه‌(سرطان) و له‌به‌رچوونی منداڵ له‌سكی دایكی به‌گوێره‌ی تۆژینه‌وه ‌نوێكان,چونكه‌ناهێڵێ كۆرپه‌ڵه‌به‌دیواری منداڵدان بنوسێت.له‌و ڕوانگه‌وه‌ ده‌توانرێ زیو به‌كار بهێنرێ بۆ خاوێنكردنه‌وه‌ى جۆره‌كانی تری ئاو ,وه‌ك ئاوى به‌كارهاتوو له‌وێستگه‌ى دروستكردنی كاره‌با,و ئاوی زێرابه‌كان,و تاوه‌رى ساردكردنه‌وه‌ی پیشه‌سازی و مه‌له‌وانگه‌كان. به‌كارهێنانی زیو له‌بواری له‌پزیشكی : زیو له‌بواری پزیشكیدا به‌كارده‌هێنرێ بۆ دروستكردنی مه‌رهه‌م,ئێستا زیو به‌كارده‌هێنرێ له‌ چاره‌سه‌ركردنی شه‌كره‌ كه ‌ڕێژه‌ی شه‌كر ڕێك ده‌خات له‌ له‌ش, و له‌مه‌له‌وانگه‌كان كه‌ئایۆنی زیو و ئۆكسجینی شلی تێده‌كرێ بۆ له‌ناوبردنی زینده‌وه‌ره‌ورده‌كان كه‌ هۆیه‌كه‌ بۆ پیسبوونی برین له‌ قاچ و پێ , چینێكی ته‌نك له‌ زیو له‌سه‌ر برینه‌كه‌ دروست ده‌بێ و ناهێڵێ زینده‌وه‌رى له‌سه‌ر گه‌شه‌بكات . به‌كارهێنانی زیو له‌ بواری نه‌خۆشییه‌كانی ده‌روونی : تۆژینه‌وه‌ نوێكان ده‌ریان خستووه‌ كه‌ زیو كاریگه‌ری هه‌یه‌ له‌سه‌ر باری ده‌روونی مرۆڤ به‌ میكانیزمێكی نادیار, له‌به‌ر ئه‌وه‌ به‌كارده‌هێنرێ له‌ده‌رمانه‌كانی چاره‌سه‌ركردنی ده‌روونی له‌زۆربه‌ی داووده‌رمانه‌كانی ویلایه‌ته‌ یه‌كگرتووه‌كانی ئه‌مریكا, هه‌روه‌ها مرۆڤ له‌ نه‌خۆشییه‌ ترسناكه‌كان ده‌پارێزێ , ئێستا له‌ ئه‌مریكا گیراوه‌ی زیو باوه‌, كه‌ گیراوه‌یه‌كه‌ بڕێكی زۆر زیوی تواوه‌ى تێدایه‌ له‌ شێوه‌ى پۆدره‌ى زۆر ورد ده‌گاته‌ (500 مللی گرام) له‌یه‌ك لیتر, گیراوه‌كه‌ ده‌خورێته‌وه‌ به‌ ڕێژه‌ى یه‌ك مڵاكی چا ڕۆژانه‌. به‌كارهێنانه‌كانی ترى زیو : ئاوێته‌كانی زیو (Highgyen Silver) به‌كاردێن له‌ به‌رگریكردنی ڤایرۆس و نه‌خۆشییه‌كان له‌ كێڵگه‌كانی په‌له‌وه‌ر و گیانله‌به‌ر, وه‌ هه‌روه‌ها له‌ كوشتارگه‌ى په‌له‌وه‌ر و گیانله‌به‌ر و كارگه‌ی خواردنی قوتوبه‌ند و نه‌خۆشخانه‌كان و كارگه‌ی ئاوى قوتوبه‌ند. زیو به‌كارده‌هێنرێ له‌ دروستكردنی زۆر جۆر له‌ كوتاڵ و چنینی دژ به‌ به‌كتریاو ڤایرۆس, بۆ نموونه‌ ئه‌و پێڵاوه‌ داخراوه‌ی كه‌ هه‌وای ناچیتێ و به‌كتریا بۆنێكی ناخۆش دروست ده‌كات له‌ ئاره‌قه‌, ده‌توانرێ كه‌مێك ئایۆنی زیو به‌كاربێ له‌و كوتاڵه‌ى دیوی ناوه‌وه‌ی پێڵاوى لێ دروست ده‌كرێ یان كه‌مێك ئایۆنی زیو به‌كاربهێنرێ له‌ كوتاڵی گۆره‌وی. ڕێگاكانی پاككردنه‌وه‌(تعقیم) به‌ زیو : پاككردنه‌وه‌ (تعقیم) به‌ زیو به‌ دوو ڕێگا ده‌بێ :- · دانانی زیو وه‌ك ئاوێته‌ى كیمیایی. · به‌زیوكردنى(تفضیض) كاره‌بایی, كه‌ بریتییه‌ له‌ دانانی ئایۆنی زیو له‌ ناو ئاو به‌ڕێگه‌ى كاره‌بایی به‌ تواندنه‌وه‌ى زیو له‌ گیراوه‌. ئاوێته‌ی كیمیایی تری زیو به‌كار دێت له‌ پاككردنه‌وه‌(تعقیم) وه‌ك (Highgyen Silver) .
////////////
به ترکی آذری چیوه:

Civə (Hg) (farsca: جیوه-jive)– D.İ. Mendeleyevin elementlərin dövri sistemində 80-ci element.
Civə ağır metal, birləşmələri olduqca təhlükəli maddələr olub atmosferisuyu, qida məhsullarını çirkləndirir. Tərkibində civə olan üzvi birləşmələr, xüsusən metal-civə daha təhlükəlidir.[1]
https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Pouring_liquid_mercury_bionerd.jpg/200px-Pouring_liquid_mercury_bionerd.jpg
Civə
Civə ən toksik metallardan biri olub, ətraf mühitdə geniş yayılmışdır, trofik zəncirdə bioakkumlyasiya və hərəkət etmə qabiliyyətinə malikdir. Civənin qida zənciri üzrə hərəkətini sadə şəkildə aşağıdakı kimi göstərmək olar: su – dib çöküntüləri – biota (bentos, fito – zooplankton), balıqla qidalanan balıqlar və quşlar. Biokimyəvi metilləşmə prosesləri nəticəsində su sistemlərində əmələ gələn qurğuşunun üzvi birləşmələri daha təhlükəlidir.
Civə ətraf mühitə civə tərkibli filizlərin çıxarılması və əridilməsi, sulfid filizlərindən əridib əlvan metalların alınması, filizdən qızıl əldə edildiyi, sellülozun ağardılması, xlor, kaustik, vinilxlorid, elektrik avadanlıqlarının (lampa, müxtəlif cərəyan mənbələri), ölçü və nəzarət cihazlarının (termometr, monometr), civətərkibli tibb preparatlarının, sementin istehsalı, civətərkibli pestisidlərin istifadəsi, daş kömür və mazutun yandırılması zamanı daxil olur. Tullantıların yandırılması zamanı da ətraf mühitə xeyli miqdarda civə daxil olur.
Rusiyada sənaye müəssisələrindən atmosferə atılan civənin miqdarı təxminən ildə 10 ton təşkil edir (Revic, Avaliani, Tixonova, 2004). Bu sənaye cəhətdən inkişaf etmiş digər ölkələrin sənayesi tərəfindən atılan civənin miqdarına uyğun gəlir. Atmosfer havasında civənin YVK 0,3 mkq/m, içməli suda 0,5 mkq/l, torpaqda isə 2,1 mq/kq təşkil edir.[2]
//////////////
به ترکی استانبولی چیوه:
Cıva (Farsça: جیوه- jive), sembolü "Hg" ve atom numarası 80 olan kimyasal element. "Hg" sembolü,Latince'deki hydrargyrum (sulu/sıvı gümüş) sözcüğünden gelir. Cıva için İngilizcede ise iki sözcük kullanılır: "mercury" ve "quicksilver" (akıcı gümüş).
Cıva, hava, su ve toprakta birkaç şekilde bulunur. Bunlar, elementel cıva, inorganik ve organik cıva bileşikleri şeklindedir.
///////////
Mercury is a chemical element with symbol Hg and atomic number 80. It is commonly known asquicksilver and was formerly named hydrargyrum (/haɪˈdrɑːrdʒərəm/).[3] A heavy, silvery d-blockelement, mercury is the only metallic element that is liquid at standard conditions for temperature and pressure; the only other element that is liquid under these conditions is bromine, though metals such as caesiumgallium, and rubidium melt just above room temperature.
Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide). The red pigment vermilion is obtained by grinding natural cinnabar or synthetic mercuric sulfide.
Mercury is used in thermometersbarometersmanometerssphygmomanometersfloat valves,mercury switchesmercury relaysfluorescent lamps and other devices, though concerns about the element's toxicity have led to mercury thermometers and sphygmomanometers being largely phased out in clinical environments in favor of alternatives such as alcohol- or galinstan-filled glass thermometers and thermistor- or infrared-based electronic instruments. Likewise, mechanical pressure gauges and electronic strain gauge sensors have replaced mercury sphygmomanometers. Mercury remains in use in scientific research applications and in amalgam for dental restoration in some locales. It is used in fluorescent lighting. Electricity passed through mercury vapor in a fluorescent lamp produces short-wave ultraviolet light which then causes the phosphor in the tube to fluoresce, making visible light.
Mercury poisoning can result from exposure to water-soluble forms of mercury (such as mercuric chloride or methylmercury), by inhalation of mercury vapor, or by eating food contaminated with mercury.
Contents
  [show
Properties
Physical properties
https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Pound-coin-floating-in-mercury.jpg/220px-Pound-coin-floating-in-mercury.jpg
pound coin (density ~7.6 g/cm3) floats in mercury due to the combination of the buoyant force and surface tension.
Mercury is a heavy, silvery-white metal. Compared to other metals, it is a poor conductor of heat, but a fair conductor of electricity.[4] Mercury has a freezing point of −38.83 °C and aboiling point of 356.73 °C,[5][6][7] both exceptionally low for a metal. In addition, mercury's boiling point of 629.88 K (356.73 °C) is the lowest of any metal.[8] A complete explanation of this delves deep into the realm of quantum physics, but it can be summarized as follows: mercury has a unique electron configuration where electrons fill up all the available 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d, and 6s subshells. Because this configuration strongly resists removal of an electron, mercury behaves similarly to noble gases, which form weak bonds and hence melt at low temperatures. Upon freezing, the volume of mercury decreases by 3.59% and its density changes from 13.69 g/cm3 when liquid to 14.184 g/cm3 when solid. The coefficient of volume expansion is 181.59 x 10−6 at 0 °C, 181.71 x 10−6 at 20 °C and 182.50 x 10−6 at 100 °C (per °C).
The stability of the 6s shell is due to the presence of a filled 4f shell. An f shell poorly screens thenuclear charge that increases the attractive Coulomb interaction of the 6s shell and the nucleus (seelanthanide contraction). The absence of a filled inner f shell is the reason for the somewhat higher melting temperature of cadmium and zinc, although both these metals still melt easily and, in addition, have unusually low boiling points.
On the other hand, gold, which is one space to the left of mercury on the periodic table, has atoms with one fewer 6s electron than mercury. Those electrons are more easily removed and are shared between the gold atoms forming relatively strong metallic bonds.[5][6]
Chemical properties
Mercury does not react with most acids, such as dilute sulfuric acid, although oxidizing acids such as concentrated sulfuric acid and nitric acid or aqua regia dissolve it to give sulfatenitrate, and chloride. Like silver, mercury reacts with atmospheric hydrogen sulfide. Mercury reacts with solid sulfur flakes, which are used in mercury spill kits to absorb mercury (spill kits also use activated carbon and powdered zinc).[9]
Amalgams
https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Mercury_discharge_tube.jpg/220px-Mercury_discharge_tube.jpg
Mercury-discharge spectral calibration lamp
Mercury dissolves many other metals such as gold and silver to form amalgams. Iron is an exception, and iron flasks have traditionally been used to trade mercury. Several other first row transition metals with the exception of manganesecopper andzinc are reluctant to form amalgams. Other elements that do not readily form amalgams with mercury include platinum.[10][11]Sodium amalgam is a common reducing agent in organic synthesis, and is also used in high-pressure sodium lamps.
Mercury readily combines with aluminium to form a mercury-aluminium amalgam when the two pure metals come into contact. Since the amalgam destroys the aluminium oxide layer which protects metallic aluminium from oxidizing in-depth (as in iron rusting), even small amounts of mercury can seriously corrode aluminium. For this reason, mercury is not allowed aboard an aircraft under most circumstances because of the risk of it forming an amalgam with exposed aluminium parts in the aircraft.[12]
Mercury embrittlement is the most common type of liquid metal embrittlement.
Isotopes
Main article: Isotopes of mercury
There are seven stable isotopes of mercury with 202
Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194
Hg with a half-life of 444 years, and 203
Hg with a half-life of 46.612 days. Most of the remaining radioisotopes have half-lives that are less than a day. 199
Hg and 201
Hgare the most often studied NMR-active nuclei, having spins of 12 and 32 respectively.[4]
Etymology
Hg is the modern chemical symbol for mercury. It comes from hydrargyrum, a Latinized form of theGreek word ὑδράργυρος (hydrargyros), which is a compound word meaning "water-silver" (from ὑδρ-hydr-, the root of ὕδωρ, "water," and ἄργυρος argyros "silver") – since it is liquid like water and shiny like silver. The element was named after the Roman god Mercury, known for his speed and mobility. It is associated with the planet Mercury; the astrological symbol for the planet is also one of the alchemical symbols for the metal; the Sanskrit word for alchemy is Rasavātam which means "the way of mercury".[13] Mercury is the only metal for which the alchemical planetary name became the common name.[14]
History
https://upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Mercury_symbol.svg/120px-Mercury_symbol.svg.png
The symbol forthe planet Mercury() has been used since ancient times to represent the element
Mercury was found in Egyptian tombs that date from 1500 BC.[15]
In China and Tibet, mercury use was thought to prolong life, heal fractures, and maintain generally good health, although it is now known that exposure to mercury vapor leads to serious adverse health effects.[16] The first emperor of China, Qín Shǐ Huáng Dì—allegedly buried in a tomb—the "Mausoleum of the First Qin Emperor"—that contained rivers of flowing mercury on a model of the land he ruled, representative of the rivers of China—was killed by drinking a mercury and powdered jade mixture formulated by Qinalchemists (causing liver failuremercury poisoning, and brain death) who intended to give him eternal life.[17][18] Khumarawayh ibn Ahmad ibn Tulun, the second Tulunid ruler of Egypt (r. 884–896), known for his extravagance and profligacy, reportedly built a basin filled with mercury, on which he would lie on top of air-filled cushions and be rocked to sleep.[19]
In November 2014 "large quantities" of mercury were discovered in a chamber 60 feet below the 1800-year-old pyramid known as the "Temple of the Feathered Serpent," "the third largest pyramid of Teotihuacan," Mexico along with "jade statues, jaguar remains, a box filled with carved shells and rubber balls."[20]
The ancient Greeks used mercury in ointments; the ancient Egyptians and the Romans used it in cosmetics. In Lamanai, once a major city of the Maya civilization, a pool of mercury was found under a marker in a Mesoamerican ballcourt.[21][22] By 500 BC mercury was used to make amalgams (Medieval Latin amalgama, "alloy of mercury") with other metals.[23]
Alchemists thought of mercury as the First Matter from which all metals were formed. They believed that different metals could be produced by varying the quality and quantity of sulfur contained within the mercury. The purest of these was gold, and mercury was called for in attempts at the transmutation of base (or impure) metals into gold, which was the goal of many alchemists.[14]
The mines in Almadén (Spain), Monte Amiata (Italy), and Idrija (now Slovenia) dominated mercury production from the opening of the mine in Almadén 2500 years ago, until new deposits were found at the end of the 19th century.[24]
Occurrence
https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Mercury_output2.PNG/300px-Mercury_output2.PNG
Mercury output in 2005
Mercury is an extremely rare element in Earth's crust, having an average crustal abundance by mass of only 0.08 parts per million (ppm).[25] Because it does not blend geochemically with those elements that constitute the majority of the crustal mass, mercury ores can be extraordinarily concentrated considering the element's abundance in ordinary rock. The richest mercury ores contain up to 2.5% mercury by mass, and even the leanest concentrated deposits are at least 0.1% mercury (12,000 times average crustal abundance). It is found either as a native metal (rare) or in cinnabarcorderoite,livingstonite and other minerals, with cinnabar (HgS) being the most common ore.[26] Mercury ores usually occur in very young orogenic belts where rocks of high density are forced to the crust of Earth, often in hot springs or other volcanic regions.[27]
Beginning in 1558, with the invention of the patio process to extract silver from ore using mercury, mercury became an essential resource in the economy of Spain and its American colonies. Mercury was used to extract silver from the lucrative mines in New Spain and Peru. Initially, the Spanish Crown's mines in Almadén in Southern Spain supplied all the mercury for the colonies.[28] Mercury deposits were discovered in the New World, and more than 100,000 tons of mercury were mined from the region of Huancavelica, Peru, over the course of three centuries following the discovery of deposits there in 1563. The patio process and later pan amalgamation process continued to create great demand for mercury to treat silver ores until the late 19th century.[29]
https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Mercury-27128.jpg/220px-Mercury-27128.jpg
Native mercury with cinnabar, Socrates mine, Sonoma County, California. Cinnabar sometimes alters to native mercury in the oxidized zone of mercury deposits.
Former mines in Italy, the United States and Mexico, which once produced a large proportion of the world supply, have now been completely mined out or, in the case of Slovenia (Idrija) and Spain (Almadén), shut down due to the fall of the price of mercury. Nevada's McDermitt Mine, the last mercury mine in the United States, closed in 1992. The price of mercury has been highly volatile over the years and in 2006 was $650 per 76-pound (34.46 kg) flask.[30]
Mercury is extracted by heating cinnabar in a current of air and condensing the vapor. The equation for this extraction is
HgS + O2 → Hg + SO2
In 2005, China was the top producer of mercury with almost two-thirds global share followed by Kyrgyzstan.[31]Several other countries are believed to have unrecorded production of mercury from copper electrowinningprocesses and by recovery from effluents.
Because of the high toxicity of mercury, both the mining of cinnabar and refining for mercury are hazardous and historic causes of mercury poisoning.[32] In China, prison labor was used by a private mining company as recently as the 1950s to create new cinnabar mines. Thousands of prisoners were used by the Luo Xi mining company to establish new tunnels.[33] Worker health in functioning mines is at high risk.
The European Union directive calling for compact fluorescent bulbs to be made mandatory by 2012 has encouraged China to re-open cinnabar mines to obtain the mercury required for CFL bulb manufacture. Environmental dangers have been a concern, particularly in the southern cities of Foshan andGuangzhou, and in Guizhou province in the southwest.[33]
Abandoned mercury mine processing sites often contain very hazardous waste piles of roasted cinnabar calcines. Water run-off from such sites is a recognized source of ecological damage. Former mercury mines may be suited for constructive re-use. For example, in 1976 Santa Clara County, California purchased the historic Almaden Quicksilver Mine and created a county park on the site, after conducting extensive safety and environmental analysis of the property.[34]
Chemistry
Mercury exists in two main oxidation states, I and II. Higher oxidation states are rare (e.g., mercury(IV) fluoride, HgF
4), but have been detected under extraordinary conditions.[35]
Compounds of mercury(I)
Unlike its lighter neighbors, cadmium and zinc, mercury usually forms simple stable compounds with metal-metal bonds. Most mercury(I) compounds arediamagnetic and feature the dimeric cation, Hg2+
2. Stable derivatives include the chloride and nitrate. Treatment of Hg(I) compounds complexation with strong ligands such as sulfide, cyanide, etc. induces disproportionation to Hg2+
 and elemental mercury.[36] Mercury(I) chloride, a colorless solid also known as calomel, is really the compound with the formula Hg2Cl2, with the connectivity Cl-Hg-Hg-Cl. It is a standard in electrochemistry. It reacts with chlorine to give mercuric chloride, which resists further oxidation. Mercury(I) hydride, a colorless gas, has the formula HgH, containing no Hg-Hg bond.
Indicative of its tendency to bond to itself, mercury forms mercury polycations, which consist of linear chains of mercury centers, capped with a positive charge. One example is Hg2+
3(AsF−
6)
2.[37]
Compounds of mercury(II)
Mercury(II) is the most common oxidation state and is the main one in nature as well. All four mercuric halides are known. They form tetrahedral complexes with other ligands but the halides adopt linear coordination geometry, somewhat like Ag+ does. Best known is mercury(II) chloride, an easily sublimatingwhite solid. HgCl2 forms coordination complexes that are typically tetrahedral, e.g. HgCl2−
4.
Mercury(II) oxide, the main oxide of mercury, arises when the metal is exposed to air for long periods at elevated temperatures. It reverts to the elements upon heating near 400 °C, as was demonstrated by Joseph Priestley in an early synthesis of pure oxygen.[9] Hydroxides of mercury are poorly characterized, as they are for its neighbors gold and silver.
Being a soft metal, mercury forms very stable derivatives with the heavier chalcogens. Preeminent is mercury(II) sulfide, HgS, which occurs in nature as the ore cinnabar and is the brilliant pigment vermillion. Like ZnS, HgS crystallizes in two forms, the reddish cubic form and the black zinc blende form.[4]Mercury(II) selenide (HgSe) and mercury(II) telluride (HgTe) are also known, these as well as various derivatives, e.g. mercury cadmium telluride andmercury zinc telluride being semiconductors useful as infrared detector materials.[38]
Mercury(II) salts form a variety of complex derivatives with ammonia. These include Millon's base (Hg2N+), the one-dimensional polymer (salts of HgNH+
2)
n), and "fusible white precipitate" or [Hg(NH3)2]Cl2. Known as Nessler's reagentpotassium tetraiodomercurate(II) (HgI2−
4) is still occasionally used to test for ammonia owing to its tendency to form the deeply colored iodide salt of Millon's base.
Mercury fulminate is a detonator widely used in explosives.[4]
Higher oxidation states
Oxidation states above +2 in a non-charged species are extremely rare, although a cyclic mercurinium(IV) cation, with three substituents, may be an intermediate in oxymercuration reactions.[39][40] In 2007, a report of synthesis of a mercury(IV) compound, mercury(IV) fluoride, was published.[41] In the 1970s, there was a claim on synthesis of a mercury(III) compound, but it is now thought to be false.[42]
Organomercury compounds
Main article: Organomercury compound
Organic mercury compounds are historically important but are of little industrial value in the western world. Mercury(II) salts are a rare example of simple metal complexes that react directly with aromatic rings. Organomercury compounds are always divalent and usually two-coordinate and linear geometry. Unlike organocadmium and organozinc compounds, organomercury compounds do not react with water. They usually have the formula HgR2, which are often volatile, or HgRX, which are often solids, where R is aryl or alkyl and X is usually halide or acetate. Methylmercury, a generic term for compounds with the formula CH3HgX, is a dangerous family of compounds that are often found in polluted water.[43] They arise by a process known as biomethylation.
Applications
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Maximum_thermometer_close_up_2.JPG/220px-Maximum_thermometer_close_up_2.JPG
Mercury is used primarily for the manufacture of industrial chemicals or for electrical and electronic applications. It is used in some thermometers, especially ones which are used to measure high temperatures. A still increasing amount is used as gaseous mercury in fluorescent lamps, while most of the other applications are slowly phased out due to health and safety regulations and is in some applications replaced with less toxic but considerably more expensive Galinstan alloy.[44]
Medicine
https://upload.wikimedia.org/wikipedia/commons/3/37/Amalgam.jpg
Amalgam filling
Mercury and its compounds have been used in medicine, although they are much less common today than they once were, now that the toxic effects of mercury and its compounds are more widely understood. The first edition of the Merck's Manual featured many mercuric compounds[45] such as:
·         Mercauro
·         Mercuro-iodo-hemol.
·         Mercury-ammonium chloride
·         Mercury Benzoate
·         Mercuric
·         Mercury Bichloride (Corrosive Mercuric Chloride, U.S.P.)
·         Mercury Chloride
·         Mild Mercury Cyanide
·         Mercury Succinimide
·         Mercury Iodide
·         Red Mercury Biniodide
·         Mercury Iodide
·         Yellow Mercury Proto-iodide
·         Black (Hahnemann), Soluble Mercury Oxide
·         Red Mercury Oxide
·         Yellow Mercury Oxide
·         Mercury Salicylate
·         Mercury Succinimide
·         Mercury Imido-succinate
·         Mercury Sulphate
·         Basic Mercury Subsulphate; Turpeth Mineral
·         Mercury Tannate
·         Mercury-Ammonium Chloride
Mercury is an ingredient in dental amalgamsThiomersal (called Thimerosal in the United States) is an organic compound used as a preservative invaccines, though this use is in decline.[46] Thiomersal is metabolized to ethyl mercury. Although it was widely speculated that this mercury-based preservative could cause or trigger autism in children, scientific studies showed no evidence supporting any such link.[47] Nevertheless, thiomersal has been removed from, or reduced to trace amounts in all U.S. vaccines recommended for children 6 years of age and under, with the exception of inactivated influenza vaccine.[48]
Another mercury compound, merbromin (Mercurochrome), is a topical antiseptic used for minor cuts and scrapes that is still in use in some countries.
Mercury in the form of one of its common ores, cinnabar, is used in various traditional medicines, especially in traditional Chinese medicine. Review of its safety has found that cinnabar can lead to significant mercury intoxication when heated, consumed in overdose, or taken long term, and can have adverse effects at therapeutic doses, though effects from therapeutic doses are typically reversible. Although this form of mercury appears to be less toxic than other forms, its use in traditional Chinese medicine has not yet been justified, as the therapeutic basis for the use of cinnabar is not clear.[49]
Today, the use of mercury in medicine has greatly declined in all respects, especially in developed countries. Thermometers and sphygmomanometerscontaining mercury were invented in the early 18th and late 19th centuries, respectively. In the early 21st century, their use is declining and has been banned in some countries, states and medical institutions. In 2002, the U.S. Senate passed legislation to phase out the sale of non-prescription mercury thermometers. In 2003, Washington and Maine became the first states to ban mercury blood pressure devices.[50] Mercury compounds are found in someover-the-counter drugs, including topical antiseptics, stimulant laxatives, diaper-rash ointmenteye drops, and nasal sprays. The FDA has "inadequate data to establish general recognition of the safety and effectiveness" of the mercury ingredients in these products.[51] Mercury is still used in some diuretics although substitutes now exist for most therapeutic uses.
Production of chlorine and caustic soda
Chlorine is produced from sodium chloride (common salt, NaCl) using electrolysis to separate the metallic sodium from the chlorine gas. Usually the salt is dissolved in water to produce a brine. By-products of any such chloralkali process are hydrogen (H2) and sodium hydroxide (NaOH), which is commonly called caustic soda or lye. By far the largest use of mercury[52][53] in the late 20th century was in the mercury cell process (also called the Castner-Kellner process) where metallic sodium is formed as an amalgam at a cathode made from mercury; this sodium is then reacted with water to produce sodium hydroxide.[54] Many of the industrial mercury releases of the 20th century came from this process, although modern plants claimed to be safe in this regard.[53] After about 1985, all new chloralkali production facilities that were built in the United States used membrane cell or diaphragm cell technologiesto produce chlorine.
Laboratory uses
Some medical thermometers, especially those for high temperatures, are filled with mercury; they are gradually disappearing. In the United States, non-prescription sale of mercury fever thermometers has been banned since 2003.[55]
Mercury is also found in liquid mirror telescopes.
Some transit telescopes use a basin of mercury to form a flat and absolutely horizontal mirror, useful in determining an absolute vertical or perpendicular reference. Concave horizontal parabolic mirrors may be formed by rotating liquid mercury on a disk, the parabolic form of the liquid thus formed reflecting and focusing incident light. Such telescopes are cheaper than conventional large mirror telescopes by up to a factor of 100, but the mirror cannot be tilted and always points straight up.[56][57][58]
Liquid mercury is a part of popular secondary reference electrode (called the calomel electrode) in electrochemistry as an alternative to the standard hydrogen electrode. The calomel electrode is used to work out the electrode potential of half cells.[59] Last, but not least, the triple point of mercury, −38.8344 °C, is a fixed point used as a temperature standard for the International Temperature Scale (ITS-90).[4]
In polarography both the dropping mercury electrode [60] and the hanging mercury drop electrode [61] use elemental mercury. This use allows a new uncontaminated electrode to be available for each measurement or each new experiment.
Niche uses
Gaseous mercury is used in mercury-vapor lamps and some "neon sign" type advertising signs and fluorescent lamps. Those low-pressure lamps emit very spectrally narrow lines, which are traditionally used in optical spectroscopy for calibration of spectral position. Commercial calibration lamps are sold for this purpose; reflecting a fluorescent ceiling light into a spectrometer is a common calibration practice.[62] Gaseous mercury is also found in some electron tubes, including ignitronsthyratrons, and mercury arc rectifiers.[63] It is also used in specialist medical care lamps for skin tanning and disinfection.[64]Gaseous mercury is added to cold cathode argon-filled lamps to increase the ionization and electrical conductivity. An argon-filled lamp without mercury will have dull spots and will fail to light correctly. Lighting containing mercury can be bombarded/oven pumped only once. When added to neon filled tubes the light produced will be inconsistent red/blue spots until the initial burning-in process is completed; eventually it will light a consistent dull off-blue color.[65]
·         https://upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Germicidal_UV_discharge_tube_glow_rotate.jpg/230px-Germicidal_UV_discharge_tube_glow_rotate.jpg
The deep violet glow of a mercury vapor discharge in a germicidal lamp, whose spectrum is rich in invisible ultraviolet radiation.

·         https://upload.wikimedia.org/wikipedia/en/thumb/b/bd/Mercuryvaporlamp.jpg/213px-Mercuryvaporlamp.jpg
Skin tanner containing a low-pressure mercury vapor lamp and two infrared lamps, which act both as light source and electrical ballast

·         https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Leuchtstofflampen-chtaube050409.jpg/213px-Leuchtstofflampen-chtaube050409.jpg
Assorted types of fluorescent lamps.
Cosmetics
Mercury, as thiomersal, is widely used in the manufacture of mascara. In 2008, Minnesota became the first state in the United States to ban intentionally added mercury in cosmetics, giving it a tougher standard than the federal government.[66]
A study in geometric mean urine mercury concentration identified a previously unrecognized source of exposure (skin care products) to inorganic mercury among New York City residents. Population-based biomonitoring also showed that mercury concentration levels are higher in consumers of seafood and fish meals.[67]
Historic uses
https://upload.wikimedia.org/wikipedia/commons/thumb/5/53/Mercury_Switch_without_housing.jpg/220px-Mercury_Switch_without_housing.jpg
Single-Pole, Single-Throw (SPST) mercury switch.
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Barometer_mercury_column_hg.jpg/170px-Barometer_mercury_column_hg.jpg
Mercury manometer to measure pressure
Many historic applications made use of the peculiar physical properties of mercury, especially as a dense liquid and a liquid metal:
·         Quantities of liquid mercury ranging from 90 to 600 grams (3.2 to 21.2 oz) have been recovered from elite Mayatombs (100-700AD)[68] or ritual caches at six sites. This mercury may have been used in bowls as mirrors fordivinatory purposes. Five of these date to the Classic Period of Maya civilization (c. 250–900) but one example predated this.[69]
·         In Islamic Spain, it was used for filling decorative pools. Later, the American artist Alexander Calder built amercury fountain for the Spanish Pavilion at the 1937 World Exhibition in Paris. The fountain is now on display at the Fundació Joan Miró in Barcelona.[70]
·         Mercury was used inside wobbler lures. Its heavy, liquid form made it useful since the lures made an attractive irregular movement when the mercury moved inside the plug. Such use was stopped due to environmental concerns, but illegal preparation of modern fishing plugs has occurred.
·         The Fresnel lenses of old lighthouses used to float and rotate in a bath of mercury which acted like a bearing.[71]
·         Mercury sphygmomanometers (blood pressure meter), barometersdiffusion pumpscoulometers, and many other laboratory instruments. As an opaque liquid with a high density and a nearly linear thermal expansion, it is ideal for this role.[72]
·         As an electrically conductive liquid, it was used in mercury switches (including home mercury light switches installed prior to 1970), tilt switches used in old fire detectors, and tilt switches in some home thermostats.[73]
·         Owing to its acoustic properties, mercury was used as the propagation medium in delay line memory devices used in early digital computers of the mid-20th century.
·         Experimental mercury vapor turbines were installed to increase the efficiency of fossil-fuel electrical power plants.[74]The South Meadow power plant in Hartford, CT employed mercury as its working fluid, in a binary configuration with a secondary water circuit, for a number of years starting in the late 1920s in a drive to improve plant efficiency. Several other plants were built, including the Schiller Station in Portsmouth, NH, which went online in 1950. The idea did not catch on industry-wide due to the weight and toxicity of mercury, as well as the advent of supercritical steam plants in later years.[75][76]
·         Similarly, liquid mercury was used as a coolant for some nuclear reactors; however, sodium is proposed for reactors cooled with liquid metal, because the high density of mercury requires much more energy to circulate as coolant.[77]
·         Mercury was a propellant for early ion engines in electric space propulsion systems. Advantages were mercury's high molecular weight, low ionization energy, low dual-ionization energy, high liquid density and liquid storability at room temperature. Disadvantages were concerns regarding environmental impact associated with ground testing and concerns about eventual cooling and condensation of some of the propellant on the spacecraft in long-duration operations. The first spaceflight to use electric propulsion was a mercury-fueled ion thruster developed by NASA Lewis and flown on the Space Electric Rocket Test "SERT-1" spacecraft launched by NASA at its Wallops Flight Facility in 1964. The SERT-1 flight was followed up by the SERT-2 flight in 1970. Mercury and caesium were preferred propellants for ion engines until Hughes Research Laboratory performed studies finding xenon gas to be a suitable replacement. Xenon is now the preferred propellant for ion engines as it has a high molecular weight, little or no reactivity due to itsnoble gas nature, and has a high liquid density under mild cryogenic storage.[78][79]
Others applications made use of the chemical properties of mercury:
·         The mercury battery is a non-rechargeable electrochemical battery, a primary cell, that was common in the middle of the 20th century. It was used in a wide variety of applications and was available in various sizes, particularly button sizes. Its constant voltage output and long shelf life gave it a niche use for camera light meters and hearing aids. The mercury cell was effectively banned in most countries in the 1990s due to concerns about the mercury contaminating landfills.[80]
·         Mercury was used for preserving wood, developing daguerreotypessilvering mirrorsanti-fouling paints (discontinued in 1990), herbicides(discontinued in 1995), handheld maze games, cleaning, and road leveling devices in cars. Mercury compounds have been used in antiseptics, laxatives, antidepressants, and in antisyphilitics.
·         It was allegedly used by allied spies to sabotage Luftwaffe planes: a mercury paste was applied to bare aluminium, causing the metal to rapidly corrode; this would cause structural failures.[81]
·         Chloralkali process: The largest industrial use of mercury during the 20th century was in electrolysis for separating chlorine and sodium from brine; mercury being the anode of the Castner-Kellner process. The chlorine was used for bleaching paper (hence the location of many of these plants near paper mills) while the sodium was used to make sodium hydroxide for soaps and other cleaning products. This usage has largely been discontinued, replaced with other technologies that utilize membrane cells.[82]
·         As electrodes in some types of electrolysisbatteries (mercury cells), sodium hydroxide and chlorine production, handheld games, catalysts,insecticides.
·         Mercury was once used as a gun barrel bore cleaner.[83][84]
·         From the mid-18th to the mid-19th centuries, a process called "carroting" was used in the making of felt hats. Animal skins were rinsed in an orange solution (the term "carroting" arose from this color) of the mercury compound mercuric nitrate, Hg(NO3)2·2H2O.[85] This process separated the fur from the pelt and matted it together. This solution and the vapors it produced were highly toxic. The United States Public Health Service banned the use of mercury in the felt industry in December 1941. The psychological symptoms associated with mercury poisoning inspired the phrase "mad as a hatter".Lewis Carroll's "Mad Hatter" in his book Alice's Adventures in Wonderland was a play on words based on the older phrase, but the character himself does not exhibit symptoms of mercury poisoning.[86]
·         Gold and silver mining. Historically, mercury was used extensively in hydraulic gold mining in order to help the gold to sink through the flowing water-gravel mixture. Thin gold particles may form mercury-gold amalgam and therefore increase the gold recovery rates.[4] Large-scale use of mercury stopped in the 1960s. However, mercury is still used in small scale, often clandestine, gold prospecting. It is estimated that 45,000 metric tons of mercury used in California for placer mining have not been recovered.[87] Mercury was also used in silver mining.[88]
Historic medicinal uses
Mercury(I) chloride (also known as calomel or mercurous chloride) has been used in traditional medicine as a diuretic, topical disinfectant, and laxative.Mercury(II) chloride (also known as mercuric chloride or corrosive sublimate) was once used to treat syphilis (along with other mercury compounds), although it is so toxic that sometimes the symptoms of its toxicity were confused with those of the syphilis it was believed to treat.[89] It is also used as a disinfectant. Blue mass, a pill or syrup in which mercury is the main ingredient, was prescribed throughout the 19th century for numerous conditions including constipation, depression, child-bearing and toothaches.[90] In the early 20th century, mercury was administered to children yearly as a laxative and dewormer, and it was used in teething powders for infants. The mercury-containing organohalide merbromin (sometimes sold as Mercurochrome) is still widely used but has been banned in some countries such as the U.S.[91]
Toxicity and safety
Mercury and most of its compounds are extremely toxic and must be handled with care; in cases of spills involving mercury (such as from certainthermometers or fluorescent light bulbs), specific cleaning procedures are used to avoid exposure and contain the spill.[92] Protocols call for physically merging smaller droplets on hard surfaces, combining them into a single larger pool for easier removal with an eyedropper, or for gently pushing the spill into a disposable container. Vacuum cleaners and brooms cause greater dispersal of the mercury and should not be used. Afterwards, fine sulfurzinc, or some other powder that readily forms an amalgam (alloy) with mercury at ordinary temperatures is sprinkled over the area before itself being collected and properly disposed of. Cleaning porous surfaces and clothing is not effective at removing all traces of mercury and it is therefore advised to discard these kinds of items should they be exposed to a mercury spill.
Mercury can be absorbed through the skin and mucous membranes and mercury vapors can be inhaled, so containers of mercury are securely sealed to avoid spills and evaporation. Heating of mercury, or of compounds of mercury that may decompose when heated, should be carried out with adequate ventilation in order to minimize exposure to mercury vapor. The most toxic forms of mercury are its organic compounds, such as dimethylmercury andmethylmercury. Mercury can cause both chronic and acute poisoning.
Releases in the environment
https://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Mercury_in_Ice_Core_Upper_Fremont_Glacier.svg/220px-Mercury_in_Ice_Core_Upper_Fremont_Glacier.svg.png
Amount of atmospheric mercury deposited at Wyoming's Upper Fremont Glacier over the last 270 years
Preindustrial deposition rates of mercury from the atmosphere may be about 4 ng /(1 L of ice deposit). Although that can be considered a natural level of exposure, regional or global sources have significant effects. Volcanic eruptions can increase the atmospheric source by 4–6 times.[93]
Natural sources, such as volcanoes, are responsible for approximately half of atmospheric mercury emissions. The human-generated half can be divided into the following estimated percentages:[94][95][96]
·         65% from stationary combustion, of which coal-fired power plants are the largest aggregate source (40% of U.S. mercury emissions in 1999). This includes power plants fueled with gas where the mercury has not been removed. Emissions from coal combustion are between one and two orders of magnitude higher than emissions from oil combustion, depending on the country.[94]
·         11% from gold production. The three largest point sources for mercury emissions in the U.S. are the three largest gold mines. Hydrogeochemical release of mercury from gold-mine tailings has been accounted as a significant source of atmospheric mercury in eastern Canada.[97]
·         6.8% from non-ferrous metal production, typically smelters.
·         6.4% from cement production.
·         3.0% from waste disposal, including municipal and hazardous wastecrematoria, and sewage sludgeincineration.
·         3.0% from caustic soda production.
·         1.4% from pig iron and steel production.
·         1.1% from mercury production, mainly for batteries.
·         2.0% from other sources.
The above percentages are estimates of the global human-caused mercury emissions in 2000, excluding biomass burning, an important source in some regions.[94]
Recent atmospheric mercury contamination in outdoor urban air was measured at 0.01–0.02 µg/m3. A 2001 study measured mercury levels in 12 indoor sites chosen to represent a cross-section of building types, locations and ages in the New York area. This study found mercury concentrations significantly elevated over outdoor concentrations, at a range of 0.0065 – 0.523 μg/m3. The average was 0.069 μg/m3.[98]
Mercury also enters into the environment through the improper disposal (e.g., land filling, incineration) of certain products. Products containing mercury include: auto parts, batteries, fluorescent bulbs, medical products, thermometers, and thermostats.[99] Due to health concerns (see below), toxics use reduction efforts are cutting back or eliminating mercury in such products. For example, the amount of mercury sold in thermostats in the United States decreased from 14.5 tons in 2004 to 3.9 tons in 2007.[100]
Most thermometers now use pigmented alcohol instead of mercury, and galinstan alloy thermometers are also an option. Mercury thermometers are still occasionally used in the medical field because they are more accurate than alcohol thermometers, though both are commonly being replaced by electronic thermometers and less commonly by galinstan thermometers. Mercury thermometers are still widely used for certain scientific applications because of their greater accuracy and working range.
Historically, one of the largest releases was from the Colex plant, a lithium-isotope separation plant at Oak Ridge, Tennessee. The plant operated in the 1950s and 1960s. Records are incomplete and unclear, but government commissions have estimated that some two million pounds of mercury are unaccounted for.[101]
A serious industrial disaster was the dumping of mercury compounds into Minamata Bay, Japan. It is estimated that over 3,000 people suffered various deformities, severe mercury poisoning symptoms or death from what became known as Minamata disease.[102][103]
Occupational exposure
Due to the health effects of mercury exposure, industrial and commercial uses are regulated in many countries. The World Health OrganizationOSHA, andNIOSH all treat mercury as an occupational hazard, and have established specific occupational exposure limits. Environmental releases and disposal of mercury are regulated in the U.S. primarily by the United States Environmental Protection Agency.
Case control studies have shown effects such as tremors, impaired cognitive skills, and sleep disturbance in workers with chronic exposure to mercury vapor even at low concentrations in the range 0.7–42 μg/m3.[104][105] A study has shown that acute exposure (4 – 8 hours) to calculated elemental mercury levels of 1.1 to 44 mg/m3 resulted in chest pain, dyspnea, cough, hemoptysis, impairment of pulmonary function, and evidence of interstitialpneumonitis.[106] Acute exposure to mercury vapor has been shown to result in profound central nervous system effects, including psychotic reactions characterized by delirium, hallucinations, and suicidal tendency. Occupational exposure has resulted in broad-ranging functional disturbance, includingerethism, irritability, excitability, excessive shyness, and insomnia. With continuing exposure, a fine tremor develops and may escalate to violent muscular spasms. Tremor initially involves the hands and later spreads to the eyelids, lips, and tongue. Long-term, low-level exposure has been associated with more subtle symptoms of erethism, including fatigue, irritability, loss of memory, vivid dreams and depression.[107][108]
Treatment
Research on the treatment of mercury poisoning is limited. Currently available drugs for acute mercurial poisoning include chelators N-acetyl-D, L-penicillamine (NAP), British Anti-Lewisite (BAL), 2,3-dimercapto-1-propanesulfonic acid (DMPS), and dimercaptosuccinic acid (DMSA). In one small study including 11 construction workers exposed to elemental mercury, patients were treated with DMSA and NAP.[109] Chelation therapy with both drugs resulted in the mobilization of a small fraction of the total estimated body mercury. DMSA was able to increase the excretion of mercury to a greater extent than NAP.[110]
Fish
Main article: Mercury in fish
Fish and shellfish have a natural tendency to concentrate mercury in their bodies, often in the form of methylmercury, a highly toxic organic compound of mercury. Species of fish that are high on the food chain, such as sharkswordfishking mackerelbluefin tunaalbacore tuna, and tilefish contain higher concentrations of mercury than others. As mercury and methylmercury are fat soluble, they primarily accumulate in the viscera, although they are also found throughout the muscle tissue.[111] When this fish is consumed by a predator, the mercury level is accumulated. Since fish are less efficient at depurating than accumulating methylmercury, fish-tissue concentrations increase over time. Thus species that are high on the food chain amass body burdens of mercury that can be ten times higher than the species they consume. This process is called biomagnificationMercury poisoning happened this way in MinamataJapan, now called Minamata disease.
Regulations
International
140 countries agreed in the Minamata Convention on Mercury by the United Nations Environment Program (UNEP) to prevent emissions. [112] The convention was signed on the 10th of October 2013.[113]
United States
In the United States, the Environmental Protection Agency is charged with regulating and managing mercury contamination. Several laws give the EPA this authority, including the Clean Air Act, the Clean Water Act, the Resource Conservation and Recovery Act, and the Safe Drinking Water Act. Additionally, theMercury-Containing and Rechargeable Battery Management Act, passed in 1996, phases out the use of mercury in batteries, and provides for the efficient and cost-effective disposal of many types of used batteries.[114] North America contributed approximately 11% of the total global anthropogenic mercury emissions in 1995.[115]
The United States Clean Air Act, passed in 1990, put mercury on a list of toxic pollutants that need to be controlled to the greatest possible extent. Thus, industries that release high concentrations of mercury into the environment agreed to install maximum achievable control technologies (MACT). In March 2005, the EPA promulgated a regulation[116] that added power plants to the list of sources that should be controlled and instituted a national cap and tradesystem. States were given until November 2006 to impose stricter controls, but after a legal challenge from several states, the regulations were struck down by a federal appeals court on 8 February 2008. The rule was deemed not sufficient to protect the health of persons living near coal-fired power plants, given the negative effects documented in the EPA Study Report to Congress of 1998.[117] However newer data published in 2015 showed that after introduction of the stricter controls mercury declined sharply, indicating that the Clean Air Act had its intended impact.[118]
The EPA announced new rules for coal-fired power plants on 22 December 2011.[119] Cement kilns that burn hazardous waste are held to a looser standard than are standard hazardous waste incinerators in the United States, and as a result are a disproportionate source of mercury pollution.[120]
European Union
In the European Union, the directive on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (see RoHS) bans mercury from certain electrical and electronic products, and limits the amount of mercury in other products to less than 1000 ppm.[121] There are restrictions for mercury concentration in packaging (the limit is 100 ppm for sum of mercury, leadhexavalent chromium and cadmium) and batteries (the limit is 5 ppm).[122] In July 2007, the European Union also banned mercury in non-electrical measuring devices, such as thermometers and barometers. The ban applies to new devices only, and contains exemptions for the health care sector and a two-year grace period for manufacturers of barometers.[123]
Norway
Norway enacted a total ban on the use of mercury in the manufacturing and import/export of mercury products, effective 1 January 2008.[124] In 2002, several lakes in Norway were found to have a poor state of mercury pollution, with an excess of 1 µg/g of mercury in their sediment.[125] In 2008, Norway’s Minister of Environment Development Erik Solheim said: “Mercury is among the most dangerous environmental toxins. Satisfactory alternatives to Hg in products are available, and it is therefore fitting to induce a ban.” [126]
Sweden
Products containing mercury were banned in Sweden in 2009.[127][128]
Denmark
In 2008, Denmark also banned dental mercury amalgam,[126] except for molar masticating surface fillings in permanent (adult) teeth.
See also
·         Mercury poisoning
·         Minamata disease
·         Methylmercury
·         Red mercury
·         Amalgam (dentistry)
References
2.       Jump up^ "Mgnetic Susceptibility of the Elements And Inorganic Compounds" (PDF).www-d0.fnal.gov. Fermi National Accelerator Laboratory: DØ Experiment (lagacy document). Archived from the original (PDF) on 2004-03-24. Retrieved 18 February 2015.
4.       Jump up to:a b c d e f Hammond, C. R The Elements in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press.ISBN 0-8493-0486-5.
5.       Jump up to:a b Senese, F. "Why is mercury a liquid at STP?". General Chemistry Online at Frostburg State University. Retrieved 1 May 2007.
6.       Jump up to:a b Norrby, L.J. (1991). "Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks?". Journal of Chemical Education 68 (2): 110. Bibcode:1991JChEd..68..110Ndoi:10.1021/ed068p110.
7.       Jump up^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. pp. 4.125–4.126. ISBN 0-8493-0486-5.
9.       Jump up to:a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-HeinemannISBN 0-08-037941-9.
10.    Jump up^ Gmelin, Leopold (1852). Hand book of chemistry. Cavendish Society. pp. 103 (Na), 110 (W), 122 (Zn), 128 (Fe), 247 (Au), 338 (Pt). Retrieved30 December 2012.
11.    Jump up^ Soratur (2002). Essentials of Dental Materials. Jaypee Brothers Publishers. p. 14. ISBN 978-81-7179-989-3.
12.    Jump up^ Vargel, C.; Jacques, M.; Schmidt, M. P. (2004). Corrosion of Aluminium. Elsevier. p. 158. ISBN 9780080444956.
13.    Jump up^ Cox, R (1997). The Pillar of Celestial Fire. 1st World Publishing. p. 260.ISBN 1-887472-30-4.
14.    Jump up to:a b Stillman, J. M. (2003). Story of Alchemy and Early Chemistry. Kessinger Publishing. pp. 7–9. ISBN 978-0-7661-3230-6.
15.    Jump up^ "Mercury and the environment — Basic facts"Environment Canada, Federal Government of Canada. 2004. Retrieved 27 March 2008.
16.    Jump up^ "Mercury — Element of the ancients". Center for Environmental Health Sciences, Dartmouth College. Retrieved 9 April 2012.
17.    Jump up^ "Qin Shihuang". Ministry of Culture, People's Republic of China. 2003. Retrieved 27 March 2008.
18.    Jump up^ Wright, David Curtis (2001). The History of China. Greenwood Publishing Group. p. 49. ISBN 0-313-30940-X.
19.    Jump up^ Sobernheim, Moritz (1987). "Khumārawaih". In Houtsma, Martijn Theodoor. E.J. Brill's first encyclopaedia of Islam, 1913–1936, Volume IV: 'Itk–Kwaṭṭa. Leiden: BRILL. p. 973. ISBN 90-04-08265-4.
20.    Jump up^ [1]
21.    Jump up^ Pendergast, David M. (6 August 1982). "Ancient maya mercury". Science 217(4559): 533–535. Bibcode:1982Sci...217..533P.doi:10.1126/science.217.4559.533PMID 17820542.
22.    Jump up^ "Lamanai". Retrieved 17 June 2011.
23.    Jump up^ Hesse R W (2007). Jewelrymaking through history. Greenwood Publishing Group. p. 120. ISBN 0-313-33507-9.
24.    Jump up^ Eisler, R. (2006). Mercury hazards to living organisms. CRC Press.ISBN 978-0-8493-9212-2.
25.    Jump up^ Ehrlich, H. L.; Newman D. K. (2008). Geomicrobiology. CRC Press. p. 265. ISBN 978-0-8493-7906-2.
26.    Jump up^ Rytuba, James J. "Mercury from mineral deposits and potential environmental impact". Environmental Geology 43 (3): 326–338.doi:10.1007/s00254-002-0629-5.
27.    Jump up^ "Mercury Recycling in the United States in 2000" (PDF). USGS. Retrieved7 July 2009.
28.    Jump up^ Burkholder, M. & Johnson, L. (2008). Colonial Latin America. Oxford University Press. pp. 157–159. ISBN 0-19-504542-4.
29.    Jump up^ Jamieson, R W (2000). Domestic Architecture and Power. Springer. p. 33.ISBN 0-306-46176-5.
30.    Jump up^ Brooks, W. E. (2007). "Mercury" (PDF). U.S. Geological Survey. Retrieved30 May 2008.
31.    Jump up^ World Mineral Production. London: British Geological Survey, NERC. May 2001. Check date values in: |year= / |date= mismatch (help)
32.    Jump up^ About the Mercury Rule. Act.credoaction.com (21 December 2011). Retrieved on 30 December 2012.
34.    Jump up^ Boulland M (2006). New Almaden. Arcadia Publishing. p. 8. ISBN 0-7385-3131-6.
35.    Jump up^ Wang, X; Andrews, L; Riedel, S; Kaupp, M (2007). "Mercury Is a Transition Metal: The First Experimental Evidence for HgF4". Angewandte Chemie International Edition (Wiley-VCH) 46 (44): 8371–5.doi:10.1002/anie.200703710PMID 17899620.
36.    Jump up^ Henderson, W. (2000). Main group chemistry. Great Britain: Royal Society of Chemistry. p. 162. ISBN 0-85404-617-8.
37.    Jump up^ Brown, I. D.; Gillespie, R. J.; Morgan, K. R.; Tun, Z.; Ummat, P. K. (1984). "Preparation and crystal structure of mercury hexafluoroniobate (Hg
3NbF
6) and mercury hexafluorotantalate (Hg
3TaF
6): mercury layer compounds". Inorganic Chemistry 23 (26): 4506–4508. doi:10.1021/ic00194a020.
38.    Jump up^ Rogalski, A (2000). Infrared detectors. CRC Press. p. 507. ISBN 90-5699-203-1.
39.    Jump up^ Bamford, C.H.; Compton, R.G.; Tipper, C.F.H. (1973). Addition and Elimination Reactions of Aliphatic Compounds. Elsevier. pp. 49–. ISBN 978-0-444-41051-1.
40.    Jump up^ Carey, Francis A. & Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part A: Structure and Mechanisms. Springer. pp. 517–.ISBN 978-0-387-44897-8.
41.    Jump up^ Wang, Xuefang; Andrews, Lester; Riedel, Sebastian; Kaupp, Martin (2007). "Mercury Is a Transition Metal: The First Experimental Evidence for HgF4".Angew. Chem. Int. Ed. 46 (44): 8371–8375. doi:10.1002/anie.200703710.PMID 17899620.
42.    Jump up^ Riedel, S.; Kaupp, M. (2009). "The Highest Oxidation States of the Transition Metal Elements" (PDF). Coordination Chemistry Reviews 253 (5–6): 606–624. doi:10.1016/j.ccr.2008.07.014.
43.    Jump up^ National Research Council (U.S.) – Board on Environmental Studies and Toxicology (2000). Toxicological effects of methylmercury. National Academies Press. ISBN 978-0-309-07140-6.
44.    Jump up^ Surmann, P; Zeyat, H (November 2005). "Voltammetric analysis using a self-renewable non-mercury electrode". Analytical and Bioanalytical Chemistry 383(6): 1009–13. doi:10.1007/s00216-005-0069-7PMID 16228199.
45.    Jump up^ "Merck's Manual 1899" (First ed.). Retrieved 16 June 2013.
46.    Jump up^ FDA. "Thimerosal in Vaccines". Retrieved 25 October 2006.
47.    Jump up^ Parker SK; Schwartz B; Todd J; Pickering LK (2004). "Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data". Pediatrics 114 (3): 793–804. doi:10.1542/peds.2004-0434.PMID 15342856. Erratum (2005). Pediatrics 115 (1): 200.doi:10.1542/peds.2004-2402 PMID 15630018.
48.    Jump up^ "Thimerosal in vaccines". Center for Biologics Evaluation and Research, U.S. Food and Drug Administration. 6 September 2007. Retrieved 1 October2007.
49.    Jump up^ Liu J; Shi JZ; Yu LM; Goyer RA; Waalkes MP (2008). "Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials?". Exp. Biol. Med. (Maywood) 233 (7): 810–7. doi:10.3181/0712-MR-336.PMC 2755212PMID 18445765.
50.    Jump up^ "Two States Pass First-time Bans on Mercury Blood Pressure Devices". Health Care Without Harm. 2 June 2003. Retrieved 1 May 2007.
52.    Jump up^ The CRB Commodity Yearbook (annual). 2000. p. 173. ISSN 1076-2906.
53.    Jump up to:a b Leopold, B. R. (2002). "Chapter 3: Manufacturing Processes Involving Mercury. Use and Release of Mercury in the United States." (PDF). National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. Archived from the original (PDF) on 21 June 2007. Retrieved 1 May 2007.
54.    Jump up^ "Chlorine Online Diagram of mercury cell process". Euro Chlor. Archived from the original on 2 September 2006. Retrieved 15 September 2006.
55.    Jump up^ "Mercury Reduction Act of 2003". United States. Congress. Senate. Committee on Environment and Public Works. Retrieved 6 June 2009.
56.    Jump up^ "Liquid-mirror telescope set to give stargazing a new spin". Govert Schilling. 14 March 2003. Archived from the original on 18 August 2003. Retrieved 11 October 2008.
57.    Jump up^ Gibson, B. K. (1991). "Liquid Mirror Telescopes: History". Journal of the Royal Astronomical Society of Canada 85: 158.Bibcode:1991JRASC..85..158G.
60.    Jump up^ Zoski, Cynthia G. (7 February 2007). Handbook of Electrochemistry. Elsevier Science. ISBN 0-444-51958-0.
61.    Jump up^ Kissinger, Peter; Heineman, William R. (23 January 1996). Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded (2nd ed.). CRC. ISBN 0-8247-9445-1.
62.    Jump up^ Hopkinson, G. R.; Goodman, T. M.; Prince, S. R. (2004). A guide to the use and calibration of detector array equipment. SPIE Press. p. 125. ISBN 0-8194-5532-6.
63.    Jump up^ Howatson A H (1965). "Chapter 8". An Introduction to Gas Discharges. Oxford: Pergamon Press. ISBN 0-08-020575-5.
64.    Jump up^ Milo G E; Casto B C (1990). Transformation of human diploid fibroblasts. CRC Press. p. 104. ISBN 0-8493-4956-7.
65.    Jump up^ Shionoya, S. (1999). Phosphor handbook. CRC Press. p. 363. ISBN 0-8493-7560-6.
66.    Jump up^ "Mercury in your eye?". CIDPUSA. 16 February 2008. Retrieved20 December 2009.
67.    Jump up^ McKelvey W; Jeffery N; Clark N; Kass D; Parsons PJ. 2010 (2011)."Population-Based Inorganic Mercury Biomonitoring and the Identification of Skin Care Products as a Source of Exposure in New York City". Environ Health Perspect 119 (2): 203–9. doi:10.1289/ehp.1002396.PMC 3040607PMID 20923743.
68.    Jump up^ Liquid mercury found under Mexican pyramid could lead to king's tomb by Alan Yuhas on 24 April 2015 (Guardian News)
69.    Jump up^ Healy, Paul F.; Blainey, Marc G. (2011). "Ancient Maya Mosaic Mirrors: Function, Symbolism, And Meaning". Ancient Mesoamerica (Cambridge University Press) 22 (22): 229–244 (241). doi:10.1017/S0956536111000241.
70.    Jump up^ Lew K (2008). Mercury. The Rosen Publishing Group. p. 10. ISBN 1-4042-1780-0.
71.    Jump up^ Pearson L F (2003). Lighthouses. Osprey Publishing. p. 29. ISBN 0-7478-0556-3.
72.    Jump up^ Ramanathan E. AIEEE Chemistry. Sura Books. p. 251. ISBN 81-7254-293-3.
73.    Jump up^ Shelton, C (2004). Electrical Installations. Nelson Thornes. p. 260.ISBN 0-7487-7979-5.
74.    Jump up^ Popular Science 118. Bonnier Corporation. 1931. p. 40. ISSN 0161-7370.
75.    Jump up^ Mueller, Grover C. (September 1929). Cheaper Power from Quicksilver. Popular Science.
76.    Jump up^ Mercury as a Working Fluid. Museum of Retro Technology. 13 November 2008.
77.    Jump up^ Collier (1987). Introduction to Nuclear Power. Taylor & Francis. p. 64.ISBN 1-56032-682-4.
78.    Jump up^ "Glenn Contributions to Deep Space 1". NASA. Retrieved 7 July 2009.
79.    Jump up^ "Electric space propulsion". Retrieved 7 July 2009.
80.    Jump up^ "IMERC Fact Sheet: Mercury Use in Batteries". Northeast Waste Management Officials' Association. January 2010. Retrieved 20 June 2013.
81.    Jump up^ Gray, T. (22 September 2004). "The Amazing Rusting Aluminum"Popular Science. Retrieved 7 July 2009.
82.    Jump up^ Dufault, Renee; Leblanc, Blaise; Schnoll, Roseanne; Cornett, Charles; Schweitzer, Laura; Wallinga, David; Hightower, Jane; Patrick, Lyn; Lukiw, Walter J (2009). "Mercury from Chlor-alkali plants". Environmental Health 8: 2. doi:10.1186/1476-069X-8-2PMC 2637263PMID 19171026.
83.    Jump up^ Francis, G. W. (1849). Chemical Experiments. D. Francis. p. 62.
84.    Jump up^ Castles, WT; Kimball, VF (2005). Firearms and Their Use. Kessinger Publishing. p. 104. ISBN 978-1-4179-8957-7.
85.    Jump up^ Lee, J.D. (1999). Concise Inorganic Chemistry. Wiley-Blackwell. ISBN 978-0-632-05293-6.
86.    Jump up^ Waldron, HA (1983). "Did the Mad Hatter have mercury poisoning?". Br Med J (Clin Res Ed) 287 (6409): 1961. doi:10.1136/bmj.287.6409.1961.PMC 1550196PMID 6418283.
87.    Jump up^ Alpers, C. N.; Hunerlach, M. P.; May, J. Y.; Hothem, R. L. "Mercury Contamination from Historical Gold Mining in California". U.S. Geological Survey. Retrieved 26 February 2008.
88.    Jump up^ "Mercury amalgamation". Corrosion Doctors. Retrieved 7 July 2009.
89.    Jump up^ Pimple, K.D. Pedroni; J.A. Berdon, V. (9 July 2002). "Syphilis in history". Poynter Center for the Study of Ethics and American Institutions at Indiana University-Bloomington. Retrieved 17 April 2005.
90.    Jump up^ Mayell, H. (17 July 2007). "Did Mercury in "Little Blue Pills" Make Abraham Lincoln Erratic?"National Geographic News. Retrieved 15 June 2008.
91.    Jump up^ "What happened to Mercurochrome?". 23 July 2004. Retrieved 7 July2009.
92.    Jump up^ "Mercury: Spills, Disposal and Site Cleanup". Environmental Protection Agency. Retrieved 11 August 2007.
94.    Jump up to:a b c Pacyna E G; Pacyna J M; Steenhuisen F; Wilson S (2006). "Global anthropogenic mercury emission inventory for 2000". Atmos Environ 40 (22): 4048. Bibcode:2006AtmEn..40.4048P.doi:10.1016/j.atmosenv.2006.03.041.
95.    Jump up^ "What is EPA doing about mercury air emissions?". United States Environmental Protection Agency (EPA). Retrieved 1 May 2007.
96.    Jump up^ Solnit, R. (September–October 2006). "Winged Mercury and the Golden Calf". Orion Magazine. Retrieved 3 December 2007.
97.    Jump up^ Maprani, Antu C.; Al, Tom A.; MacQuarrie, Kerry T.; Dalziel, John A.; Shaw, Sean A.; Yeats, Phillip A. (2005). "Determination of Mercury Evasion in a Contaminated Headwater Stream". Environmental Science & Technology 39(6): 1679. Bibcode:2005EnST...39.1679Mdoi:10.1021/es048962j.
98.    Jump up^ "Indoor Air Mercury" (PDF). newmoa.org. May 2003. Retrieved 7 July2009.
99.    Jump up^ "Mercury-containing Products". United States Environmental Protection Agency (EPA). Retrieved 1 May 2007.
102.Jump up^ "Minamata Disease The History and Measures". Ministry of the Environment, Government of Japan. Retrieved 7 July 2009.
103.Jump up^ Dennis Normile (27 September 2013). "In Minamata, Mercury Still Divides".Science 341: 1446. Bibcode:2013Sci...341.1446N.doi:10.1126/science.341.6153.1446.
104.Jump up^ Ngim, CH; Foo, SC; Boey, K.W.; Keyaratnam, J (1992). "Chronic neurobehavioral effects of elemental mercury in dentists". British Journal of Industrial Medicine 49 (11): 782–90. doi:10.1136/oem.49.11.782.PMC 1039326PMID 1463679.
105.Jump up^ Liang, YX; Sun, RK; Sun, Y; Chen, ZQ; Li, LH (1993). "Psychological effects of low exposure to mercury vapor: Application of computer-administered neurobehavioral evaluation system". Environmental Research 60 (2): 320–7.Bibcode:1993ER.....60..320Ldoi:10.1006/enrs.1993.1040.PMID 8472661.
106.Jump up^ McFarland, RB & Reigel, H (1978). "Chronic Mercury Poisoning from a Single Brief Exposure". J. Occup. Med. 20 (8): 532. doi:10.1097/00043764-197808000-00003.
107.Jump up^ Mercury, Environmental Health Criteria monograph No. 001, Geneva: World Health Organization, 1976, ISBN 92-4-154061-3
108.Jump up^ Inorganic mercury, Environmental Health Criteria monograph No. 118, Geneva: World Health Organization, 1991, ISBN 92-4-157118-7
109.Jump up^ Bluhm, RE; et al. (1992). "Elemental Mercury Vapour Toxicity, Treatment, and Prognosis After Acute, Intensive Exposure in Chloralkali Plant Workers. Part I: History, Neuropsychological Findings and Chelator effects.". Hum Exp Toxicol 11 (3): 201–10. doi:10.1177/096032719201100308.PMID 1352115.
110.Jump up^ Bluhm, Re; Bobbitt, Rg; Welch, Lw; Wood, Aj; Bonfiglio, Jf; Sarzen, C; Heath, Aj; Branch, Ra (1992). "Elemental mercury vapour toxicity, treatment, and prognosis after acute, intensive exposure in chloralkali plant workers. Part I: History, neuropsychological findings and chelator effects.". Human & Experimental Toxicology 11 (3): 201–10.doi:10.1177/096032719201100308PMID 1352115.
111.Jump up^ Cocoros, G.; Cahn, P. H.; Siler, W. (1973). "Mercury concentrations in fish, plankton and water from three Western Atlantic estuaries" (PDF). Journal of Fish Biology 5 (6): 641–647. doi:10.1111/j.1095-8649.1973.tb04500.x.
116.Jump up^ "Clean Air Mercury Rule". United States Environmental Protection Agency (EPA). Retrieved 1 May 2007.
117.Jump up^ "State of New Jersey et al., Petitioners vs. Environmental Protection Agency (Case No. 05-1097)" (PDF). United States Court of Appeals for the District of Columbia Circuit. Argued 6 December 2007, Decided 8 February 2008. Retrieved 30 May 2008.
118.Jump up^ Mark S. Castro, John Sherwell, Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury. In: Environmental Science & Technology 49, 2015, 14000−14007,doi:10.1021/acs.est.5b03576.
119.Jump up^ "Oldest, dirtiest power plants told to clean up". Boston Globe. 22 December 2011. Retrieved 2 January 2012.
120.Jump up^ Howard Berkes (10 November 2011). "EPA Regulations Give Kilns Permission To Pollute". NPR. Retrieved 2 January 2012.
121.Jump up^ "Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment". 27 January 2003. Article 4 Paragraph 1. e.g. "Member States shall ensure that, from July 1, 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)."
122.Jump up^ "Mercury compounds in European Union:"EIA Track. 2007. Retrieved30 May 2008. External link in |publisher= (help)
123.Jump up^ Jones H. (10 July 2007). "EU bans mercury in barometers, thermometers". Reuters. Retrieved 30 May 2008.
124.Jump up^ "Norway to ban mercury"EU Business. 21 December 2007. Archived from the original on 21 January 2008. Retrieved 30 May 2008. External link in |publisher= (help)
125.Jump up^ Berg, T; Fjeld, E; Steinnes, E (2006). "Atmospheric mercury in Norway: contributions from different sources". The Science of the total environment368 (1): 3–9. doi:10.1016/j.scitotenv.2005.09.059PMID 16310836.
126.Jump up to:a b Edlich, Richard F.; Rhoads, Samantha K.; Cantrell, Holly S.; Azavedo, Sabrina M. and Newkirk, Anthony T. Banning Mercury Amalgam. US FDA
127.Jump up^ Sweden to ban mercury – The Local. Thelocal.se (14 January 2009). Retrieved on 30 December 2012.
128.Jump up^ Sweden may be forced to lift ban on mercury – The Local. Thelocal.se (21 April 2012). Retrieved on 30 December 2012.
Further reading
·         Andrew Scott Johnston, Mercury and the Making of California: Mining, Landscape, and Race, 1840-1890. Boulder, CO: University Press of Colorado, 2013.